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1 IntroductionConsider the following examples of environments involving many agents:� A large automated warehouse uses �fty robots to fetch and store products, and servestens of customers at a time.� A truck company with a high volume of activity and many branches uses a largenumber of drivers and trucks to move goods across the country in an e�cient way.The scheduling of drivers and trucks at the di�erent branches is done locally, buta�ects the company's ability to respond to demands in the future.� A major software project employs a large number of programmers. Di�erent pro-grammers write di�erent parts of the program code, but the �nal behavior of eachprogrammer's segment can a�ect and is a�ected by the software written by the others.Each of the above contexts involves multiple agents whose actions are interdependent:What one does may a�ect the success of the other's actions. In addition, in each of theexamples the purpose of distinct agents' actions at any given time may be motivated bydi�erent sources: Di�erent robots in the warehouse may be serving di�erent clients, twobranches of the truck company may be involved in hauling goods for di�erent customers,and di�erent programmers may be handling di�erent aspects of the software project. Ob-viously, in all of these cases the agents face a coordination problem. Indeed, similar coordi-nation problems arise in most any system involving many agents that operate in a sharedenvironment, in which the actions of one agent can a�ect the success of another agent'sactivities.One extreme solution to such coordination problems is to provide centralized controlof all of the relevant activities. For example, we could imagine having a central entitythat determines the actions of all of the robots in the warehouse and ensures that nocon
ict or accident occurs. Such centralized solutions, however, come with a cost. As thenumber of agents and tasks involved grows, the costs in communication, synchronization,and processing grow dramatically. Moreover, the system depends crucially on such thingsas the reliability of the central element, of the communication lines, etc. In large andcomplex systems, these costs can become prohibitive. At the other extreme is the purelydecentralized approach, in which the agents attempt to act in a completely independentmanner. As a result, con
icts may arise. The goal then would be to work on methods ofresolving con
icts once they arise. Clearly, however, if the cost of a con
ict is dear, or ifcon
ict resolution is di�cult, completely independent behavior becomes unreasonable.In this work, we suggest an intermediate approach to the design of multi-agent systems:Agents should be designed to act individually, but their actions should be restricted sothat their behavior is mutually compatible. Such restrictions on agents' behaviors we callan arti�cial social system. An arti�cial social system is a mechanism for coordination that1



reduces the need for centralized control. Moreover, by following a well-designed social sys-tem, agents can avoid many potential con
icts to begin with. Thus, arti�cial social systemsbridge the gap between the completely centralized and purely decentralized approaches tocoordination. Indeed, they allow for a wide spectrum of intermediate solutions.Most actual systems involving many agents acting in a shared environment can bethought of as employing some type of social system. In human societies, for example, thesocial system consists of the legal system, together with various conventions regarding howpeople behave. Societies of animals, too, have conventions of behavior that constitute theirsocial system [40]. We can also view conventions and restrictions employed in arti�cialmulti-agent systems as constituting a social system. Our thesis, however, is that arti�cialsocial systems should be treated explicitly as a major component of the design of multi-agent systems. Our purpose in this work is to initiate the study of arti�cial social systemsas an explicit and formal paradigm for design.This paper presents the notion of arti�cial social systems. It is based on the origi-nal manuscripts that presented this notion [24, 25, 38]. We describe how arti�cial socialsystems suggest an approach to the design of multi-agent systems. Tradeo�s involvedin the design of multi-agent systems that this approach uncovers are presented, and amethodology for design based on this approach is o�ered. Various issues of concern to thedistributed/decentralized AI communities (DAI/DzAI) [3, 7, 8] are shown to �t naturallyinto the arti�cial social systems framework. Finally, we present semantics and a formallogical syntax in which reasoning about such systems can be carried out. This work hasbeen followed by a number of papers that use and extend the notion of arti�cial socialsystems (e.g., [34, 33, 39]).This paper is organized as follows. In the next section we introduce the idea of arti�cialsocial systems in the framework of a simple but widely applicable model. In Section 3 wediscuss a number of essential aspects in the design of a social system. In particular, wediscuss the golden mean problem in arti�cial societies, which we consider to be the centralproblem in the design of arti�cial social systems. In Section 4 we discuss the generalsemantics of arti�cial social system, and logical reasoning about such systems. Section 5provides some �nal remarks, and discusses related work.2 Social AutomataIn this section we consider a simple framework in which we will demonstrate the ideaof arti�cial social systems. While the idea can be used in more complex settings, theframework presented and discussed in this section already embodies many of the relevantissues.Generally speaking, a multi-agent system consists of several agents. We assume that atany given point, each such agent is in one of several states. The agent's state representsthe current situation of the agent, from the agent's point of view. In each of its states, an2



agent can perform several actions. The actions an agent performs at a given point maya�ect how the state of this agent and the states of other agents will change. We now de�nean automata-based model of multi-agent activity in which these aspects come to play. Thismodel will be used to study issues related to arti�cial social systems.A system of dependent automata (DA system) consists of two (or more) agents, each ofwhich may be in one of a �nite number of di�erent local states. We denote the set of localstates of an agent i by Li. The list hs1; : : : ; sni of states of the di�erent agents is called thesystem's con�guration. At every step, each agent performs an action. The set of possibleactions an agent i can perform is in general a function of the agent's local state. Thus, forevery state s 2 Li there is a set Ai(s) of actions that i can perform when in local state s.Let us call the list ha1; : : : ; ani of actions the di�erent agents perform at a given pointtheir joint action there. An agent's next state is a function of the system's current con-�guration and the joint action performed by the agents. At any given point, a goal for anagent is identi�ed with one of its states. We assume each agent has a set of potential goalsit might like to reach. Each agent starts in a state taken from a set of potential initialstates. We assume that an agent can perform computations to plan how to attain its goal,and to determine what actions to take at any given point. In such a model, the success ofone agent's actions may depend in a crucial way on the other agents' actions.Formally, a plan for agent i in a DA system is a function p(s) that associates withevery state s of agent i a particular action a 2 Ai(s). A plan is said to guarantee theattainment of a particular goal starting from a particular initial state in a given DA systemif by following this plan the agent will attain the goal, regardless of what the other agentsdo and what the initial states of the other agents are.Clearly, computing such plans can be rather complex. Moreover, the resulting planmight not be very useful. A plan that needs to be able to respond to any possible behaviorby the other agents may be very ine�cient1 in the number of steps it takes. In some cases,such a plan may even fail to exist!A DA system is said to be social if, for every initial state si and goal state sg, it iscomputationally feasible for an agent to devise, on-line, an e�cient plan that guaranteesto attain the goal sg state when starting in the initial state si. DA systems in which thesets Ai(s) represent the set of actions that agent i is physically capable of performing atstate s will often fail to be social. For example, in a situation where an agent waiting atan intersection may at any point in time choose to move into the intersection, no otheragent can have a plan that guarantees it will safely cross this intersection. We shall modifya DA system by what we call a social law. Formally, a social law � for a given DAsystem S consists of functions hA01; A02; : : : ; A0ni, satisfying A0i(s) � Ai(s) for every agent iand state s 2 Li. Intuitively, a social law will restrict the set of actions an agent is \allowed"to perform at any given state. Given a DA system S and a social law � for S, if we replace1Unless stated otherwise, we will assume that a problem is feasible, e�cient, or tractable, if there existsa polynomial algorithm for solving it. Other assumptions can be treated similarly.3



the functions Ai of S by the restricted functions A0i, we obtain a new DA system. Wedenote this new system by S�. Intuitively, in S� the agents can behave only in a mannercompatible with the social law �.From the point of view of arti�cial social systems, a number of computational questionsare natural at this stage. These computational problems relate to �nding a set of restrictions(called the social law) on the actions performed by di�erent agents at di�erent states of theoriginal DA system. The restrictions will usually be determined o�-line before the initiationof activity and will induce a system where agents are able to (e�ciently) achieve their goalsduring the on-line activity. For example, given a DA system S we may be interested inrestricting the agents' actions by a social law � to yield a system S� so that either:(a) in S� every agent has, for each of its goals sg, a plan guaranteed to achieve sg;(b) condition (a) holds, and the plans prescribed by (a) are e�cient;(c) condition (a) holds, and the problem of computing plans in S� is tractable; or(d) both (b) and (c) hold. (In this case we consider the system S� to be social.)Various assumptions about the structure of the DA system, for example regarding thenumber of local states agents have, or the number of actions an agent can perform in astate, may a�ect the above-mentioned computational problems. Analogues of problems(a){(d) above will apply to more complex types of systems as well. We now turn to studya particular problem in the context of DA systems.The following theorem illustrates the kind of computational results which we can ob-tain regarding the arti�cial social systems approach in the dependent automata setting.We �rst state the theorem and then discuss its interpretation. Formally, we will de�nethe problem of designing a social system with respect to a DA system with n agentsand an assignment of goals to each agent as follows. We are given a DA system S =(L1; : : : ; Ln; C0;A; A1; : : : ; An; � ), where the Li's are sets of local states of agent i, C0 � �Liis a set of initial con�gurations, A is a set of actions and Ai : Li ! 2A ascribes a set of pos-sible actions for each agent in every local state. Finally, � is a transition function mappingcon�gurations and joint actions into con�gurations. We de�ne the size of such a system tobe jAj+maxi jLij.2 The goals are given by sets Gi � Li, for i = 1; : : : ; n. A local state s ofagent i is called an initial state if it appears in one of the con�gurations in C0. We will beinterested in a social law �, such that in S�, given any agent i and any initial state s0 2 Liand goal sgi 2 Gi, there exists a plan pg : Li ! A that is guaranteed to reach sgi startingfrom s0.We can show:2Our results hold for other natural de�nitions of the size of the system as well. For example, they holdis we replace the term maxi jLij by �i(jLij). 4



Theorem 2.1: Let n � 2 be a constant. Given a DA system S with n agents, the problemof �nding a social law �, such that in S� each agent can devise plans for reaching eachgoal state from each initial state, if such a law � exists, is NP-complete.Proving that a problem is NP-complete is usually taken as evidence that the problemis hard to solve. No e�cient algorithms are known for solving NP-complete problems,and it is conjectured that none exist. In our case, however, the NP-completeness can beinterpreted in a positive manner as well. Indeed, the fact that the problem is in NP showsthat the veri�cation of the design process can be done e�ciently. Roughly speaking, theprocess of designing a social law in the setting of Theorem 2.1 corresponds to guessing asocial law and associated plans, all of which can be encoded in polynomial space and canbe veri�ed in polynomial time. Since this design process will usually be done before theinitiation of activity for a particular system and can be supported by automatic veri�cation,we get that a trial and error procedure often becomes feasible in the design stage. As wewill discuss later, the designer's ability to attempt to solve NP-hard problems o�-line inthe design stage is in general greater than the agents' ability to tackle such problems whenthey encounter a con
ict on-line in the course of their activity.The above discussion introduces a basic setting where arti�cial social systems can bediscussed, and a (fairly positive) basic theorem regarding it. However, the main objective ofthe setting of DA systems in this paper is to illustrate the arti�cial social system approach;it is by no means the most general model in which the related ideas can be discussedand studied. One extension of this model is concerned with the case where the plans theagents execute are not restricted to be functions of their local state, but rather can dependon the full history of the agent's previous states and actions. In this extended setting,a social law is taken to be a restriction on the plans an agent might devise. We willrefer to dependent automata setting with the extended notion of a plan as the extendeddependent automata setting. If the (extended type of) social law enables to e�cientlyconstruct e�cient (extended) plans for achieving each agent's goals from each of its initialstates, then we will say the induced extended dependent automata setting is social. In thefollowing, we are interested only in e�cient plans, where the number of actions that mightbe executed in the course of following a given plan is polynomially bounded. We are able toshow that an analogue of the above theorem (as well as its positive interpretations) holdsfor this extended setting as well.Theorem 2.2: Let n � 2 be a constant. Given an extended dependent automata settingwith n agents, the problem of �nding an extended social law that induces a social extendeddependent automata setting, if one exists, is NP-complete.3 Designing Social LawsIn the previous section we studied social laws in the context of dependent automata. Thesame ideas apply in a much broader set of contexts. In general, we will have some model5



of a multi-agent activity, and a social law will restrict the behavior of the agents in thismodel. Speci�cally, we can identify a plan for an agent with an individual strategy in thegame-theoretic sense (or a protocol in the language of distributed systems). Intuitively,the social law will determine which strategies are \legal" and which are not. Nevertheless,most of the relevant issues remain the same as with dependent automata. For example, aswe saw in Section 2, a social law can (i) enable an agent to design a plan that guaranteesto attain a particular goal for which no plan exists without the social law; (ii) allow shorterand more e�cient plans for certain goals; and (iii) simplify the domain in which plan designis performed, thereby simplifying the computational problem involved in designing a planto reach a given goal.Notice that in controlling the actions, or strategies, available to an agent, the sociallaw plays a dual role: Roughly speaking, by reducing the set of strategies available to agiven agent, the social system may limit the number of goals the agent is able to attain.By restricting the behaviors of the other agents, however, the social system may make itpossible for the agent to attain more goals, and in some cases these goals will be attainableusing simpler and more e�cient plans than in the absence of the social system. An overlyliberal social system will allow each agent to carry out a large number of strategies. Theagent may therefore hope to be able to attain many useful goals. Other agents, however,are also able to carry out a very large number of strategies, and strategies of di�erent agentsare likely to be incompatible. As a result, instead of being able to devise plans to attainmany goals, an agent may end up being able to attain only a small number of goals, andeven they might be attainable only at a high cost to the agent. If, on the other hand, thesocial law is overly restrictive, then the number of legal strategies available to an agent isvery small, and the likelihood of collision between di�erent agents' strategies can be greatlyreduced. In this case, however, the agents might be unable to attain their goals due to alack of options in choosing what actions to perform.A related issue is the fact that a social system will, in many cases, determine (possiblyimplicitly) what goals a given agent is able to attain, and what goals will be unattainableto the agent. Intuitively, there may often be cases in which allowing an agent to attain acertain goal may cause unreasonable damage to other agents. We can think of such goals as\anti social". The goal of hurting another agent is a blatant example of this. Less blatantexamples may be getting on a bus without waiting in line. By forcing the agents to standin line before getting on a bus, the social law may prevent some agents from attaining thisgoal, while making it possible for other, perhaps weaker or more polite, agents to receivefair service. We can associate with a given social system a set of socially acceptable goalsfor each agent. These are the goals that the social system allows the agent to attain.Thus, in designing a social system, the designer needs to �nd a good compromise be-tween competing objectives. From a given agent's point of view, an ideal social systemwould allow the agent to be able to attain as many goals as possible, and to do so ase�ciently as possible. But what is ideal for one agent may be undesirable for another,and vice versa. As a result, the social system should strike the right balance: It shouldrestrict the allowable behaviors of the various agents enough to serve the di�erent agents6



in a good manner. (What good here means will depend on the application.) We refer tothe problem of �nding such a compromise as the golden mean problem in arti�cial socialsystems. The golden mean problem as described here applies directly to the context ofdependent automata discussed in Section 2. We remark that in a given scenario, in whichwe are given a model of multi-agent activity (e.g., a particular dependent automata) and anotion of what a good balance between the needs of di�erent agents is, there need not bea unique social system that is good. Many acceptable social systems will usually exist forthe given scenario.In summary, practically any e�ective social system must come to grips with the goldenmean problem in one way or another. In fact, we can view the design of a social system asconsisting of searching for a reasonable solution to the golden mean problem. In particular,the computational problems we de�ned and investigated in the previous section are acollection of golden mean problems in the context of the dependent automata model. Inthese computational problems we assumed that all the goals are considered social, but otherassumptions can be treated similarly. The di�erence between the golden mean problemswe investigated in items (a){(d) in Section 2 is in the de�nition of what we consider to bea good solution. Our results in Section 2 can therefore be interpreted as a study of thegolden mean problem in the framework of a basic model for multi-agent activity.We now consider a variant of the golden mean problem in another basic model, whichwe call a one-shot social game. The model we present is somewhat simpli�ed, for purposesof exposition. Our aim is to see how the golden-mean problem is captured in a generalgame-theoretic (i.e. strategic) setting. We start with a set S of possible physical strategies,identical for all agents. We also assume a set Gsoc of socially acceptable goals. With eachgoal g 2 Gsoc and agent i we associate a payo� function ug(i) that assigns to each jointstrategy in Sn a value between 0 and 1. In the formulation of the golden mean problembelow we assume that the social restrictions on the strategies are similar for all agents. Inaddition, we assume that the value of a payo� function for an agent depends only on itscurrent goal and the strategies executed. Hence, we can refer w.l.o.g. only to the payo�functions of the �rst agent, and drop the agent's number from the notation of a payo�function. Given an \e�ciency parameter" 0 � � � 1 we can now formulate the followingproblem:De�nition 3.1: [Basic Golden Mean] Let n � 2 be a constant. Given a set of n agents,a set S of possible physical strategies, a set Gsoc of socially acceptable goals, and for eachg 2 Gsoc a payo� function ug : Sn �! [0; 1], �nd a set �S � S of \socially acceptable"strategies such that for all g 2 Gsoc there exists s 2 �S such that ug(s; �) � � for all� 2 �Sn�1.This de�nition formalizes a particular variant of the golden mean problem in generalgame-theoretic terms.3 Nevertheless, this de�nition captures the main issue involved: In3Other variants would be formalized in a similar fashion. The case where we have a one-shot game of7



solving a golden mean problem, the designer needs to disallow some of the possible strategiesin order to ensure e�cient achievement of certain goals, while on the other hand it isnecessary to maintain enough strategies in order that agents can attain their goals in areasonably e�cient manner. Corresponding to the de�nition of the basic golden meanproblem is a natural computational decision problem: Given a set S of possible physicalstrategies, the agents' payo� functions and a parameter �, determine whether there existsa set �S that will satisfy the basic golden mean problem. In making this precise, one has tomake certain assumptions on the number of strategies, the size of Gsoc, how the strategiesare presented to us, and how the utilities are computed. Under what are essentially veryweak assumptions,4 we can prove the following Theorem.Theorem 3.2: The decision problem corresponding to a basic golden mean problem isNP-complete (in the number of strategies and goals). If the number of goals is bounded bya constant, then the problem is polynomial.As in the case of Theorem 2.1, we can view the NP-completeness result here as apositive indication. The fact that the problem is in NP suggests that an o�-line trial anderror procedure for determining the social restrictions may be feasible.Notice that we have been discussing the golden mean problem mainly in the contextof the (o�-line) design stage of an arti�cial social system. However, in a precise sense,instances of this problem need to be solved repeatedly to resolve con
icts between di�erentagents' intended actions. In fact, in su�ciently rich contexts it seems crucial for agentsto occasionally attempt to resolve such con
icts, thereby essentially solving a local goldenmean problem. One thing that Theorem 3.2 implies is that if agents can reach arbitrarystates of con
ict, then there will be cases in which it will be computationally intractable forthem to negotiate a compromise. This can be taken as further evidence for the importanceof the design stage, or what we have been calling arti�cial social systems. One of the rolesof the design would be to simplify the world so that, to the extent possible, agents do notreach unresolvable con
icts during the course of their activities. We further discuss this inSection 3.1. The second part of Theorem 3.2, referring to the case where the number ofgoals is bounded by a constant, is somewhat less important for the issues discussed in thispaper. However, it motivated a general heuristic for design that we discuss in Section 3.2.3.1 O�-line vs. on-lineWe think of the design of a social law as a chie
y o�-line activity; it is performed bythe system designers before the agents start their actual activity. The agents' actionsand plans are ultimately performed on-line in the multi-agent system. Namely, an agentonly two agents with only one goal, where the agents may have di�erent local states, coincide with thecomputational problem discussed in [26].4Details can be found in the Appendix. 8



must ultimately plan a course of action and carry it out with rather stringent constraintson the time, resources, and information available. Indeed, a sometimes crucial aspect ofon-line activity is that the resources the agent is able to apply in deciding on a courseof action may be extremely limited. The system designers, on the other hand, will oftenhave access to considerably greater resources for the purpose of designing the system. Theadvantages of investing in the o�-line design stage are threefold. First, since the designer'so�-line resources are usually greater than the agents' on-line resources, some problemsmay be better solved by the designer than they would be solved on-line by the agents.For example, solving, or �nding an approximate solution, to an NP-hard problem may befeasible in an o�-line setting, while it may often be hopeless to handle on-line. The second,and perhaps more important, advantage of investing in the design stage is that an o�-linedesign of a good social law will keep the agents from arriving at many of the con
icts tobegin with. This can result in far more e�ective and e�cient on-line activity by the agents.Finally, in many cases the design of a social system may be performed together with thedesign of other aspects of the multi-agent environment. In cases in which an e�ective socialsystem is hard to come by, the environment may be modi�ed in a manner that will simplifythe problem of devising the social law. Examples are adding tra�c lights, or changing theroad system in various ways. Naturally, such operations are much harder to implementon-line than they are at the o�-line design stage.We have been focusing on how the design of an e�ective social system can allow agentsto act individually in pursuit of their goals, thereby reducing, and in some fortunate casesperhaps even eliminating completely, the need for agents to communicate and explicitlycoordinate their actions. In su�ciently complex situations, however, some communicationand explicit coordination between the agents is inevitable, and in others it may be desirable.Indeed, a central concern in distributed and decentralized AI is the design of communicationand interaction protocols [2, 14]. Our framework applies equally well to such situations.For agents in a multi-agent setting to communicate, they need to have a common language,speci�c protocols for interaction, and conventions for when and how these are used. A goodsocial system will choose these so that the communication is e�cient and e�ective. Again,by making the right choices in the course of the o�-line design of a good social system, wemay be able to improve the on-line behavior of the agents and increase their bene�ts.3.2 Social routines: A heuristic for designImagine that there is a �xed number of basic tasks that an agent needs to be able toperform successfully in order to attain its goals. These may, for example, be the basicoperators used in the agent's planning program (e.g., go from(A) to(B) where A and Bare neighboring locations, or put down(T ), where the agent is currently holding T ). Thisis the type of context in which high-level planning is normally studied [1].In many cases, the set of basic tasks is rather small, while the class of behaviors thatthe agents can generate using them is rich and complex. We call the implementations of9



these tasks primitive routines. We say that a set of such routines is social if an agentfollowing a primitive routine in the set is guaranteed to successfully performed its desiredtask, so long as the other agents behave only according to the routines in this set. Givena set of basic tasks, an implementation of them by a social set of primitive routines canprovide the agents with a simple and e�ective social system. For an example of a socialprimitive routine, consider the task of �lling a glass with water. Normally, this may beimplemented by �rst going to the sink, and then �lling the glass. A social implementation,however, could consist of �rst entering the queue of agents waiting for the sink, and usingthe sink when the agent's turn comes. In this case, the social implementation guaranteesthat anyone who wants to use the sink will eventually be able to do so, while in its absence,weak or slow agents might be unable to �ll their glasses on a bad day.Given a small number of basic tasks, a social law can thus be reduced to requiringthe agents to use only routines from a prescribed set of carefully planned primitive socialroutines. The task of verifying that a set of primitive routines is social is likely to bemanageable. For example, one can associate the fact that we have a small number ofbasic tasks (for which we have to �nd corresponding social primitive routines) with therestriction of the number of primitive goals in the golden-mean problem to be bounded bya small constant. As we demonstrated, this case is computationally tractable. Moreover,an agent provided with such routines is spared the cost of verifying that a plan the agentdevises is social. As long as the agent uses only social primitive routines, the overall planis guaranteed to be social. An obvious setting that can be viewed as using social routinesfor e�ective overall behavior is driving: Tra�c laws concentrate on drivers' behaviors ina small set of speci�c types of situations, having to do with intersections, passing, andsimilar issues. Similarly, in the three examples from the introduction, the use of socialprimitive routines, at least in a large part of the activity, can greatly simplify the task ofcoordinating compatible behavior. In particular, in the case of programmers working on asoftware project, the fact that the veri�cation problem is reduced considerably once socialprimitive routines are used is of paramount importance. In the typical case, it is extremelydi�cult to verify that a program consisting of many processes working concurrently actuallydoes what it is supposed to do.3.3 Social systems and con
ict resolutionToday more than ever before people face the problem of designing arti�cial environments.As illustrated in the three example contexts presented in the introduction, the agentsoperating in these environments may be robots, they may be people, and they may even be aheterogeneous collection of people, robots, and computers. The design of such environmentsis generally a very di�cult problem.We can consider the fundamental problem of the �eld of distributed/decentralized arti�-cial intelligence (DAI/DzAI) [3, 7, 5] to be how to design arti�cial agents and environmentsfor them to operate in. For such a design to be good, it should allow the agents to fruitfully10



coexist and e�ectively function to obtain particular goals of interest. A substantial amountof explicit and formal work in distributed/decentralized arti�cial intelligence has gone intoquestions such as:� How should arti�cial agents (robots or computer programs) negotiate?� How should they strike deals with each other?� What are good schemes for resolving con
icts among arti�cial agents?� How do answers to such questions a�ect the structure of the agents?We think of an arti�cial social system as a set of conventions and rules restricting thebehavior of the agents. A major purpose of these conventions is, of course, to keep theagents from reaching con
icts to begin with, wherever possible. But avoiding con
icts byusing an appropriate social system is not always attainable, since it is not always possibleto consider all possible scenarios in advance. Moreover, in some cases the cost of avoidingcon
icts of a particular type may be higher than the cost of resolving them once they occur.A comprehensive social system must therefore also contain a component that describeshow con
icts are to be handled once they occur. The work on negotiations [18], deals[30], consensus [27], interaction protocols (e.g., [2]), as well as many other forms of con
ictresolution can be viewed as handling this very delicate and complex aspect of the designof a social system.4 Logical Reasoning about Social SystemsThe previous sections introduced and investigated basic issues in arti�cial social systemsand their design. In particular, we used an automata-theoretic and game-theoretic modelsin order to introduce and investigate computational aspects of arti�cial social systems. Inthis section we add another tool for reasoning about social systems. Namely, we presenta general logical framework for reasoning about social systems. This will enable to supplya general semantics for arti�cial social systems, and will enable formal logical reasoningabout the elements of social systems.4.1 The semantics of Arti�cial Social SystemsAs argued in [24], providing a clear semantics for arti�cial social systems is a necessary stepin their design. In particular, it will enable formal logical reasoning about social systems.In this section we gradually construct a model for an arti�cial social system. We begin byde�ning a general multi-agent system: 11



De�nition 4.1: Amulti-agent system is a tuple S = hN;W;K1; : : : ;Kn;A;Able1; : : : ;Ablen;I; T i,where:� N = f1; : : : ; ng is a set of agents;� W is a set of possible worlds;� Ki �W �W are accessibility relations (we assume that Ki is an equivalence relationfor all i 2 N );� A is a set of primitive individual actions;� Ablei :W �! 2A is a function that determines the possible physical actions for agenti (in any given world).� I is a set of possible external inputs for the agents.� T :W�(A�I)n �! W [f?g is a state transition function. This function determineswhat the next state of the world is going to be, as a function of the actions that eachagent performs, and the input each agent receives in the current world. T (w; (a; I)) =? i� there exists an action ai in (a; I) such that ai =2 Ablei(w).The structure of the setW of possible worlds, and of the possible worlds themselves willbe vitally important in any implementation of a multi-agent system. Roughly speaking, weare thinking of these along the lines of the situated automata literature [31], and the relatedwork on knowledge in distributed systems [16]. The Ki relations are intended to capturethe agents' knowledge. The possible external inputs I are intended to capture messages anagent may receive from outside the system. In particular, we can model dynamic receipt ofgoals by an agent, by having the agent receive external inputs sent by its master specifyingnew goals to pursue. Notice that the transition from one world to the next, speci�ed bythe function T , depends on the \joint action" consisting of the actions performed by allthe agents. Thus, the action an agent performs will usually not uniquely determine thechange the world will undergo. There will be many worlds that may potentially result froma given agent performing a speci�c action.Within the context of such a multi-agent system, we de�ne a strategy or plan for agent ito be a function Chi : W �! A that satis�es:1. If (w;w0) 2 Ki, then Chi(w) = Chi(w0)2. Chi(w) 2 Ablei(w) for all w 2 W .Chi(w) is intended to represent the action that agent i chooses to perform (according tothe plan) when in w. The �rst condition here requires that this action depend only on i'sknowledge; i should choose the same action in worlds it can't distinguish from one another.12



The second condition captures the idea that the action chosen must be physically possiblefor the agent to perform.We identify an agent's goal g within a multi-agent system with a set Wg � W of worlds.Intuitively, these are the worlds in which the goal has been achieved. Given our formalmodel, we say that in world w, i has a plan for attaining g if i has a plan that, starting inworld w is guaranteed to yield a world in Wg.Intuitively, we can think of the Ablei functions as corresponding to a \physical law",since they specify what actions the agents are physically capable of performing. A �rststep in extending our model to incorporate a social law is to de�ne a normative system,which further restricts agents' actions:De�nition 4.2:A normative system extending a multi-agent system S is de�ned to be the pair N =hS; fLegaligi�ni, where Legali : W �! 2A. Moreover, the functions Legali are required tosatisfy the following three conditions:1. (epistemological adequacy): Legali(w) = Legali(w0) for all (w;w0) 2 Ki;2. (physical adequacy): Legali(w) � Ablei(w) for all i and w;3. (non-triviality): Legali(w) 6= ; for all i and w; .Intuitively, Legali(w) speci�es what actions agent i is allowed to perform in w, accordingto the underlying normative code. Under this interpretation, the epistemological adequacyrequirement states that each agent will always know what actions it is allowed to perform.The physical adequacy requirement says that the actions the agent is allowed (or required)to perform are physically enabled. Finally, the nontriviality condition requires that anagent should always have some action it is allowed to perform. Implicitly, we are assumingthat a null action, corresponding to \doing nothing", should be an explicit action. Thereason for this is that there may be cases in which a normative system requires the agentto perform some active action (e.g., put out a �re). This is achieved by having Legali(w)not contain a null action.Given a normative system N = hS; fLegaligi�ni, we say that a strategy, or plan, is legalwith respect to N , if in addition to being a valid strategy in S, all chosen actions are alwayslegal actions. In other words, Condition 2 from the de�nition of a strategy is strengthenedto: 2. Chi(w) 2 Legali(w) for all w 2 W .Our intention is to de�ne a social system. Clearly, a social system is a particular typeof a normative system. However, a social system has some additional structure. There isnothing inherent in the structure of a normative system that will guarantee that nothingbad ever happens. We will, in fact, ask even more than this from a social system. Wewill also require that agents should always be able to attain any \reasonable" or \socially13



acceptable" goal. Thus, while the social system might disallow an agent to eat all of theBirthday cake leaving nothing for the others, it will make it possible for any agent thatwants to eat a piece of the cake to do so. We capture these ideas as follows. In comingto design a social system, we start out with a set Wsoc of \socially acceptable" worlds.Intuitively, the social system will be required to guarantee that the state of the world willnever exit this set, so long as the agents obey the rules of the social system. In addition,we have a set Gsoc of \reasonable", or \socially acceptable" goals, which an agent shouldalways be able to attain. Given a multi agent system S, let us denote by W0 the set ofstates that the world may be in \initially". We will assume for simplicity that W0 � Wsoc.Given a normative system extending S, we say that a world is legally reachable if it isreachable from a world in W0 by a sequence of steps in each of which all of the agents actaccording to the rules of the normative system.Formally, a social system for S consistent withWsoc and Gsoc will be a normative systemextending S that satis�es:1. A world w 2 W is legally reachable only if w 2 Wsoc.2. For every legally reachable world w, if the goal of agent i in w is g 2 Gsoc, then thereis a legal plan for i that, starting in w, will attain g so long as all other agents actaccording to the normative (social) system.Notice that Wsoc and Gsoc are, as stated, not necessary orthogonal to each other. Infact, given the level of abstraction at which we treat our states of the world (we haven'tmade any restrictions on what they can model), one could technically do away with eitherWsoc or Gsoc, and make do solely with the other. However, we introduced both because weview each of them as serving to specify distinct aspects of the system. Wsoc is intended tocapture more global aspects of the behavior, perhaps more of the so-called \safety" and\fairness" aspects of the system. The purpose of Gsoc is to guarantee that agents be able toact in a somewhat useful way; this would very roughly correspond to \liveness" in formalspeci�cation of systems.The sets Wsoc and Gsoc are used by the designer in the process of designing the socialsystem. Based on these sets, she is able to incrementally construct the rules of the system,and check them for suitability. In practice, we expect that in some cases the design stagewill include some updating of the Wsoc and Gsoc sets, as experience is gained and thedesigner becomes better acquainted with the environment the agents are to operate inand what is reasonable to expect there. Once the design stage is over, we are given anappropriate social system. As remarked above, this is a particular instance of a normativesystem. This system will be used in two later stages of the process: By the manufacturer ofagents, that are to act according to this social system, and by the agents themselves oncethey are in operation. The manufacturer will need to reason about whether his productwill act in accordance to the rules of the system, while the agent will need to reason aboutthe world, its own actions, and the actions of others, in the course of planning and acting14



in the actual environment. In both cases, the set Wsoc will no longer play a central role,and the reasoning will be performed with respect of the set of legally reachable worlds. (Infact, after the design stage, we can rede�ne Wsoc to be the set of legally reachable worlds.)The above de�nition of a social system captures the basic insight behind the method-ology of arti�cial social systems. The de�nition can be extended in various ways. Oneextension consists of explicitly modeling the utilities that agents obtain from attaininggoals via di�erent routes. For example, an agent may want to get to the airport, and wouldprefer to be driven there over taking the bus. Thus, the same goal (getting to the airport)can be attained via routes yielding di�erent utilities. Formally, utilities are added to asocial system hS; fLegaligi�n; Gsoc;Wsoci by adding a function ua;g : Wg ! [0; 1] for everyagent a and goal g 2 Gsoc. Intuitively, the value of ua;g(w) represents how pleased a isabout the state of attainment of g in the world w.4.2 Reasoning about social systemsOne of the main bene�ts of having a semantic de�nition of arti�cial social systems is theability to reason about such systems. This reasoning can be performed by the designer,when evaluating the impact of adding or deleting various laws from the system. Themanufacturer of agents (e.g., robots) that are to function in the social system will need toreason about whether its creation will indeed be equipped with the hardware and softwarenecessary to follow the rules. Finally, agents within the system can reason about the stateof the world and about what they and other agents need to do, based on their observationsof the environment and on the social system.In order to be able to reason formally, we need to decide on a language. For simplicityof exposition, we will choose a propositional language. The basic formulas will consist ofa set � of primitive propositions, including distinguished atoms social and legal, corre-sponding to the statements that the world is social and that the world is legally reachable,respectively. In addition, we have the following facts dealing with the ability of agents toperform actions in a given world: For every agent i 2 N and action a 2 A, Posp(i; a),Necp(i; a), Poss(i; a), and Necs(i; a) are formulas (read respectively as: a is physicallypossible for agent i, a is physically necessary for agent i, a is socially possible for agent i,and a is socially necessary for agent i). Later on we will also add basic formulas that dealwith agents' goals and their attainability. We close the basic formulas under negation andconjunction, as well as under knowledge operators Ki for i = 1; : : : n. The knowledge op-erators Ki will capture knowledge with respect to the physical multi-agent system. Muchof the agents' planning and reasoning, however, will be based on the assumption that allagents are acting socially, or according to the rules. For this we will add an operator Bsi forevery agent i, intended to capture his beliefs generated by the assumption that the worldis legally reachable.A model for this language will be a pair M = (S; �), where S is a social system, and� : � �! 2W is a function associating with every primitive proposition the set of worlds15



in which it holds. We now de�ne when a formula ' is satis�ed in a world w of M, whichwe denote by hM; wi j= '. The de�nition is by induction on the structure of '.(a) hM; wi j= ' (for ' 2 �) if w 2 �(').(b) hM; wi j= social if w 2 Wsoc.(c) hM; wi j= legal if w is legally reachable.(d) hM; wi j= Posp(i; a) if a 2 Ablei(w).(e) hM; wi j= Necp(i; a) if Ablei(w) = fag.(f) hM; wi j= Poss(i; a) if a 2 Legali(w).(g) hM; wi j= Necs(i; a) if Legali(w) = fag.(h) hM; wi j= :' if hM; wi 6j= '.(i) hM; wi j= ' ^  if hM; wi j= ' and hM; wi j=  .(j) hM; wi j= Ki' if hM; w0i j= ' for every w0 satisfying (w;w0) 2 Ki.(k) hM; wi j= Bsi' if hM; wi j= Ki(legal ) ') ^ :Ki:legal.The de�nition of the social belief operator Bsi in clause (k) is an instance of \belief asdefeasible knowledge", as de�ned in [23]. While Bsi is a notion of belief, in that Bsi' mayhold when ' does not, the de�nition of Bsi in clause (k) gives us a rigorous semantic handleon when facts are believed, and when they are not.We remark that our choice of having only single actions as the subject of our formulasis not su�ciently general to express all of the facts about possibility and necessity that areencoded in the Ablei and the Legali functions of M. We made this choice because ourdiscussion will only involve statements of the simpler type. Extending the language to talkabout sets of actions can be done in a straightforward way.We say that a formula ' is valid in M, denoted by M j= ', if hM; wi j= ' for allworlds w 2 W . The formula ' is valid, denoted j= ', if it is valid in M for all models M.Satis�ability is de�ned based on validity in the standard fashion. Given our choice ofsyntax and its semantics, we can now study what the valid formulas are. Clearly, there aresome obvious validities, such as the axioms of propositional logic and the modal systemS5 for the knowledge operators. In addition, the fact that Ablei(w) � Legali(w) 6= ;induces a particular relationship between the various necessity and possibility formulas.Another property of our formalism is that we assume that an agent performs a singleaction in every world. As a result, if an action a is socially necessary at a given point,then every other action b is not socially possible there. More instructive is the relationshipbetween knowledge and social actions in our models. The key facts are that j= Necs(i; a))KiNecs(i; a) and j= Poss(i; a) ) KiPoss(i; a). Let us now consider a number of validformulas that illustrate the power of our framework.16



Proposition 4.3:The following are valid formulas in our language:1. j= Bsi (' _Necs(i; a))) (Bsi' _BsiNecs(i; a))2. j= :Bsi:Necs(i; a)) BsiNecs(i; a) _Ki(:legal)3. j= Bsi [(') Necs(i; a)) ^ (:') :Poss(i; a))]) [Bsi' _Bsi:']This proposition illustrates the relationship between social necessity and social belief.The �rst clause says that if an agent believes that either ' holds or it must perform theaction a, then the agent must explicitly believe one of these facts: It either believes ' orbelieves that it must perform the action a. The second clause is self explanatory. The thirdclause says that if a fact ' determines whether or not the agent is allowed to perform theaction a in the current world, then the agent must either explicitly believe ' or it mustexplicitly believe its negation. Properties such as those presented in this proposition tellus something about the structure of the Legali functions. These properties will guide thedesigner in constructing these functions (restricting the agents' actions). In addition, theseproperties can be used by the agents in reasoning about other agents' knowledge and inlearning about the world by observing other agents' actions.Goals and action in a social systemA main purpose of an arti�cial social system is to provide a framework in which the agentswill be able to plan, act, and thereby manage to satisfy their goals. The reasoning presentedabove did not include issues related to agents' goals, such as satisfaction of goals, etc. Wenow extend the language to allow such reasoning. For simplicity, we will assume that inany given world an agent may have at most one distinguished current goal. The identity ofthis goal may change dynamically over time as a result of the agent receiving input froman external source, or as a result of the current goal being satis�ed, or perhaps even by theagent interacting with other agents. In any case, the basic idea is that an agent activelypursues its current goal at any given point in time. To reason about such goals, we addthe formulas of the form current goal(i; g) to the language, for every agent i and goal g. Ofcourse, current goal(i; g) will hold whenever g is agent i's current goal.Recall that we have associated with every goal g a set Wg of the worlds at which g issatis�ed. In this sense, a goal can be thought of as a proposition. Satisfying a goal thencoincides with satisfying the corresponding proposition. We will therefore treat goals as aspecial case of propositions and formulas. In order to reason about satisfaction of goals,we want to be able to talk about when a set T of agents can cause a fact ' to be satis�ed.Here we are mainly interested in social reachability, by which we mean that the agents in Thave a (joint) plan consisting solely of socially acceptable actions that is guaranteed toattain ', so long as all other agents follow the rules of the social system. We denote this by17



s-reachable(T;'). In analogy to social reachability we also de�ne physical reachability (inthis case we consider all physically possible actions and plans). The corresponding notationin this case will be p-reachable(T;'). We would also like to be able to reason about whatwill happen if a certain action will actually be executed. In order to do so we add appro-priate parameters to the reachability operators. We will write p-reachable(T;'; doi(a)) ifp-reachable(T;') holds in cases where agent i executes action a in the current world. Wecan similarly de�ne the parameter to be any element in the closure of the doi(a)'s underconjunction and negation. Similar parameters can be used in the s-reachable operator.We can now formulate the two conditions in the de�nition of a social system in termsof s-reachable:1. j= legal ) :s-reachable(T;:social) for all sets T � f1; : : : ; ng of agents.2. j= legal ^ current goal(i; g)) s-reachable(i; g) for every agent i and goal g 2 Gsoc.Given the above formalism, the designer of the system and its users can reason aboutactions, goals and their achievement. For example, imagine that in a certain sociallyacceptable situation Alice needs to move to the other side of a door in order to reach acertain socially acceptable goal g, but she can do so only if Bob will �rst open the door.In this case, our designer will deduce that the social system must order Bob to open thedoor. Less straightforward is the following type of reasoning: Assume that David asks Bobwhether Bob believes that Alice's goal is to achieve g. Then if Bob believes that Alicecannot attain g unless he opens the door, and he is not forced to open it, then Bob candeduce that g is not Alice's current goal. The following proposition demonstrates that suchtypes of reasoning are supported by our formalism.Proposition 4.4:The following are valid formulas in our language:j= Bsi [:p-reachable(N; g;:doi(a))]) [Bsi (:current goal(j; g)) _Bsi (Necs(i; a))]j= [legal ^ :p-reachable(N; social; doi(a))]) :Poss(i; a)Notice that the �rst part of the proposition can be considered as a formalization ofBob's reasoning in the previous example. The second part captures potential reasoning ofthe designer when disallowing some of the actions by the social law: if in a social situationagent i has an action that will necessary lead to an asocial situation, then the designer hasto conclude that this action must be socially impossible.High level social lawsIn our semantic model we have been treating the social law as a restriction on the Ableifunctions, or on the actions that the agents can perform in a given world. However, in18



general we expect the social law to be stated in terms of some high-level formal language.We now show how it is possible to bridge the gap between the two, by giving examples ofde�nitions of high-level rules in terms of the language de�ned above. For example, imaginethat we want to have a rule that states that whenever the circumstances satisfy a fact '(say, i's house is on �re), then all members of set A must help i to attain  (say, put outthe �re). We say that M enforces the rule should helpA;i('; ) i�M j= ' ^ s-reachableA[fig ) s-reachablei :Another typical rule may be that whenever the question arises, i must prefer attaining  over attaining �. As before, we now say that M enforces should preferi( ; �) i�M j= [s-reachablei( ) ^ :s-reachablei(� ^ s-reachablei( )) ^:s-reachablei( ^ s-reachablei�)]) :s-reachablei�:We may, for example, wish to have i notify j whenever i believes that ' holds. Thiscan be formalized by: The system M is said to enforce should notifyi; j(') i�should helpi;j(Bsi';BsjBsi'):Of course, we could go on with a long list of rules now. Moreover, some of our de�nitionsmay be modi�ed slightly to capture distinct senses of these and other terms. We hopethat the reader is convinced by now that our semantic de�nitions and basic propositionallanguage provide us with means to express high-level rules in a rigorous and concise fashion.5 Conclusions and related workThere is a signi�cant body of literature concerned with issues related to topics discussed inthis paper. This includes work in the areas of organization theory (see [20],[12],[20]), teamtheory ([21]), and DAI (see for example [11]). The related work in these areas of researchis especially concerned with the design of agents' roles and communication structures thatenable cooperative achievement of a common goal. Our work on arti�cial social systemsconcentrates on a somewhat complementary issue: the o�-line design and computationof laws that will enable each agent to work individually and successfully towards its owngoals during the on-line activity, provided that the other agents obey these laws. Additionalrelated work includes the synthesis of multi-agent programs ([28]) and work on cooperativediscrete event systems (DES) ([29]). The arti�cial social systems approach to design talksabout two essential stages in the design process. First, general rules governing the behaviorof agents are given (this is the \social law"), and then the behavior of each agent will bedetermined, either by the designer or by the agent, in a fashion consistent with theserules. This two-stage process can be used as a methodology for the design of discrete eventsystems as well. For further discussion of this connection, see [35].Society metaphors have been proposed before in the AI literature, albeit in somewhatdi�erent contexts. Minsky uses a society metaphor in his work on the society of mind [22].19



The notion of social choice is an important element in e.g. the work of Jon Doyle [10].Finally, social metaphors appear also in the works of Fox, Kornfeld and Hewitt, Malone,and Simon ([12], [17], [20], [36]) concerning organization theory. We treat the notion ofan arti�cial social system in a relatively narrow sense, and with a particular point of viewin mind. We wish to develop a theory to support the design of multi-agent environments,and to assist the reasoning necessary in creating or modifying agents to comply with agiven social system. Our treatment does not attempt to subsume any of the other uses ofsociety metaphors in AI, sociology, or ethology. We �nd the use of the term social systemappropriate for our purposes because of the analogy to social order in natural (humanand animal) populations. We are speci�cally interested in the context of loosely-coupledagents following uncorrelated and dynamically changing goals. Our thesis is that a societymetaphor has an important role to play in this context, so long as su�cient care is takenin de�ning, studying, and applying social systems to multi-agent activity.Much work has been devoted to an explicit and formal study of the centralized approachand of the on-line resolution of con
icts (e.g., [19], [15], [37], [30],[18]). Our work is the�rst to discuss explicitly and formally the computational mechanism that applies for non-centralized intermediate solutions.In spite of the generality of our work, we wish to emphasize that our work in no waydiminishs the crucial importance of mechanisms for interaction and communication amongagents, nor the signi�cance of the study of e�ective representations for agents. Some ofthe work developed in LIFIA [2, 9] provides considerable progress in these complementarydirections. The discussion of various ways of modeling agents is of signi�cant importance tothe coordination between agents. Further study of arti�cial social systems may need to takevarious representation levels into account while addressing the construction of useful sociallaws. Indeed, our discussion on high-level social laws is in the spirit of the discussion onbridging the gap between intentional and reactive agents in [9]. Moreover, as we explainedin Section 3.3, elaborated communication and negotiation mechanisms (as discussed in [2])may serve as essential components of a social law.Our work does not take into account the incentives agents have for cooperation. Someof the work in CNR [6, 4] has been concerned with issues such as de�ning goal adoptionas a basic form of cooperation, and with the e�ect of social power on cooperation amongagents. Although some of our technical machinery may enable to express concepts such asgoal adoption, our emphasis is on the design of arti�cial systems where agents are assumedto conform to every law prescribed by the system's designer. Our work bridges the gapbetween centralized and decentralized approaches to coordination where agents are law-abiding agents. Extending work on Arti�cial Social Systems to include a treatment ofcooperation incentives is one of the most challenging directions for future work.A particular case study of the design of a social law is presented in [34]. There, theauthors investigate tra�c laws for mobile robots that operate on an n by n grid. Theypresent nontrivial laws that allow the robots to carry out respective tasks without collisionat a rate that is within a constant of the rate the tasks would take each of them if it had20



the whole space to itself. This is an example of how appropriate o�-line design of sociallaws guarantees very e�ective on-line behavior. In [33] the authors present a novel modelthat de�nes multi-agent systems while referring explicitly to the notion of social law. Inthe framework of this model they investigate the automatic synthesis of useful social lawsand give precise conditions under which the problem becomes tractable. The treatmentpresented in that work, while having additional features of its own, can be consideredan extension of the work on social automata presented in Section 2. In addition, thatwork discusses the conditions under which the problem of algorithmically synthesizing asocial law becomes tractable. This work has been extended to non-homogeneous dynamicsocial structures in [39]. In a complementary work (see [32]) Shoham and Tennenholtzconsidered the interesting case of conventions and laws that are not determined o�-linebefore the initiation of activity, but rather emerge during the on-line activity of the system.Their research concentrates on understanding how di�erent agent behaviors and systemcharacteristics a�ect the e�ciency of convention evolution. Their work can also be viewedas a (nontrivial) extension of this one: Standards of behavior that are found to be e�cientcan be used as social laws that will lead to the successful emergence of speci�c usefulconventions.In most any environment involving many agents, the actions and behaviors of an agenta�ect and are a�ected by the actions of others, at least to a certain degree. In such settings,an agent's behavior is invariably somewhat di�erent than what it would be had there beenno other agents to consider. As a result, practically every multi-agent environment has asocial system of some sort. This systemmay have been designed a priori in a careful fashion,or it may have evolved in various ways. It may be stable or it may change dynamically.In any case, however, we claim that it is there. Moreover, we argue that arti�cial socialsystems play a major role in the overall performance of agents in multi-agent systems. Asa result, we claim that they deserve to be studied explicitly and formally, and that theirrole should be considered in the design and implementation of multi-agent systems. Thestudy of arti�cial social systems we presented suggests a new perspective on multi-agentactivity, one that gives rise to new and interesting problems. The last couple of years haveseen a considerable amount of research initiated around the idea of arti�cial social systems.Appendix: Proof of TheoremsProof of Theorem 2.1: In order to show that the problem in NP we �rst observethat any social law can be encoded in polynomial space. Notice that the size of a planfor agent i is bounded by jLij � jAj, and therefore is polynomial. Given this fact and sincethere are only polynomially many pairs of initial states and goal states, we get that thedesired set of plans (which guarantee reaching from the initial states to the goal states inthe restricted system), if one exists, can also be encoded in polynomial space. It remainsto show that a veri�cation that the plans indeed guarantee the achievement of the goalsfrom the initial states, given the social law, can be done in polynomial time. This will be21



done by a backward chaining procedure in the restricted system (i.e., in the system S�where the actions of the agents are restricted by the law �). Let p be a plan for agenti that should guarantee reaching from initial state s to a goal state sg. We consider thecon�guration space of the (restricted) dependent automata, and initially mark as \good"only the con�gurations where agent i's state is sg. The procedure continues in iterationswhere in each iteration additional con�gurations are marked as \good", if the action thatp selects in them leads to a con�guration already marked as \good". The process stopswhen there are no more con�gurations that can be marked good. The plan p guaranteesreaching from state s to state sg if and only if all the initial con�gurations of the systemwhere the state of agent i is s are marked \good" at the end of the above process.We now prove that the problem is NP-hard by a reduction from 3-SAT [13]. Assumewe are given an instance � of 3-SAT, and let k be the number of clauses in �. We assumethat the dependent automata has two identical agents. For each of them, there is a singleinitial state s0, a single failure state bad, and k goal states sg1; : : : ; sgk, each associated witha single clause of �. We de�ne the set A of possible actions to contain an action for pair(c; l), where c is a clause in �, and l is a literal (or the negation of a literal) such that lis one of the disjuncts in c. Thus, A consists of at most 3k actions. We now describethe transition function � . When the �rst agent performs the action (c; l) and the secondagent performs (c0; l0) when they are both in the initial state, the following happens. If theactions con
ict, by which we mean that l is the complement of l0 (either l = :l0 or l0 = :l),then both agents move to their respective bad states. Similarly, if c = c0 but l 6= l0, thenagain they both move to bad. If, however, l and l0 are not complements, and if c = c0 thenl = l0, then the �rst agent moves to the state corresponding to clause c, and the second tothe state corresponding to clause c0. All states other than the initial states are sinks; oncethere, an agent will never move to another state.We now claim that � has a satisfying assignment if and only if the DA just constructedhas a social law as desired. Assume that � is a satisfying assignment for �. We de�ne thesocial law � to allow only actions (c; l) where l is true under �. It is obvious that with thislaw, no agent will ever reach the bad state, since the social law guarantees that the agentswill never generate con
icting actions. Since � is a satisfying assignment, it follows thatfor each clause c in � there is at least one literal lc 2 c that is true under �. It followsthat an agent can reach the goal state corresponding to c by performing (c; lc). It followsthat each agent has a plan to reach each of its goal states, and we are done with the onlyif direction. It remains to show that if a social law of this type exists, then � is satis�able.Let � be such a social law. Clearly, it does not allow an agent to perform an action (c; l)in the initial state, while the other one performs a con
icting action (c0; l0). In addition,for each clause c 2 �, only one action (c; l) is allowed. It follows that for every literal lsuch that some action (c; l) is allowed by �, no action (c0; l0) where l0 is the complementof l is allowed by �. As a result, � de�nes a partial assignment to the literals of �. Since �enables each agent to obtain any goal state from the initial state, it follows that everyassignment � that is consistent with the partial assignment induced by � is guaranteed tosatisfy �. We conclude that the existence of a social law � of the desired type implies the22



satis�ability of the 3-SAT instance �.Proof of Theorem 2.2: The fact that the problem in NP-hard is proved as in Theo-rem 2.1. We now prove that the problem is in NP.We will take a social law to be a set of plans for each agent, where a plan is associatedwith any pair of initial and goal states of each agent. We will show that we can guessand encode such social laws in polynomial space and verify that they are satisfactory inpolynomial time. This will show that the problem is in NP. Notice that we require eachplan to succeed no matter what the initial states and goals (and hence plans) of the otheragents are. The fact that the plans constitute a social law, makes them common knowledge(although an agent will not know which plans are actually executed by the other agents),which is crucial for the proof of this theorem.We will prove that the problem is in NP, by showing that if an appropriate plan exists,then it can be replaced by a plan that can be encoded and veri�ed e�ciently. Consider aplan p for agent i for reaching from one of its initial states to one of its goal states. Thenumber of actions and observations (i.e. states visited) that might be made along anyexecution of p is polynomial (by our requirement.) Now, any assignment of initial statesand goals for the other agents will correspond to one sequence of polynomial length ofobservations and actions induced by p. Since there are no more than polynomially manysuch assignments (of initial and goal states) there are no more than polynomially manysuch sequences. Combining the above, each plan p corresponds to polynomially manysequences, each of which is of polynomial length. These sequences are equivalent to theplan p and can be encoded in polynomial space. The veri�cation that p achieves the goalis done by simulating the behavior of p (as described by the above concise representation)for any possible initial con�guration and any possible behavior of the other agents (thereare polynomially many such behaviors and they are again encoded concisely.) Combiningthe above, we get that the problem is in NP.Proof of Theorem 3.2: For ease of presentation, we will use the following assumptions:1. There are only two agents. We refer to the agents as I and II. The case of any otherconstant number of agents is treated similarly.2. We assume that both agents have the same set of possible physical strategies. More-over, there is a given enumeration S = s1; : : : ; sm of the strategies.3. There are k goals: g1; : : : ; gk. For each goal gl there is a corresponding payo� function.Such a payo� function associates with each element (si; sj) 2 S�S a number between0 and 1. This number stands for the payo� of (w.l.o.g) agent I when it has the goalgl and executes the strategy si while agent II executes sj.With each goal gl we associate an m �m matrix Ml. The value of the (i; j)'th termin Ml will be the payo� for agent I when its goal is gl and it plays strategy si while agent23



II plays sj . Given a subset s of the numbers between 1 and n, we de�ne M sl to be thesub-matrix of Ml generated by deleting each row and column whose number appears ins. The golden mean problem turns into: Find s s.t. each matrix M sl will satisfy that themaxmin on the its rows is greater or equal to �.We can now prove theorem 3.2:The problem is in NP: We guess the strategies that are to be deleted, and then wecheck that for every goal there is a row in the appropriate sub-matrix that remains after thedeletion and contains only 1's. The case where the number of goals is bounded by a constantwill turn out to be polynomial, since we have to choose only a constant number of strategies(one for each goal) from the set of strategies. Therefore, there are only polynomially manysuch selections, each of which can be checked as mentioned above (in polynomial time).We prove NP-hardness by reduction from SAT. We associate with each clause in theSAT formula a matrix. The i'th row and i'th column of this matrix correspond to thevariable xi if 1 � i � n, and to the literal :xi�n if n+ 1 � i � 2n, where x1; : : : ; xn arethe variables in the appropriate formula. Each entry in the matrix of the form (i; i+ n),or (i + n; i) will contain the value 0, and other entries in the matrix will contain a 1 ina certain row if the literal associated with its number appears in the appropriate clauseand 0 otherwise. A similar thing is done for columns. Now we take � = 1, and we have areduction to the golden mean problem. If a golden mean exists, then we can �nd a satisfyingassignment by substituting 1 for any literal that corresponds to a row that is not deleted(if the row that corresponds to a literal and the row that corresponds to its negation areboth not deleted then we can w.l.o.g assign 1 to one of them and 0 to the other). Noticethat if a golden mean exists then in each sub-matrix created by the appropriate deletionthere is a row with all 1's. Thus, we get that the literals corresponding to these rows willsatisfy the appropriate clauses. On the other hand, if there is a satisfying assignment, thenwe will throw the rows and columns that correspond to literals that get the value 0, andwill keep the others. It can be easily veri�ed that the above gives us the desired result.Proof of Proposition 4.3:1. Assume that hM; wi j= Bsi (' _Necs(i; a)).This implies that hM; wi j= Ki(:legal _ ' _Necs(i; a)) ^ :Ki:legal.We have to show that hM; wi j= (Ki(:legal_')_Ki(:legal_Necs(i; a)))^:Ki:legal.It su�ces to show that hM; wi j= (Ki(:legal _ ') _Ki(:legal _Necs(i; a))).If the above does not hold, then there exist w1; w2, which are both indistinguishablefrom w, such that hM; w1i j= legal ^ :', and hM; w2i j= legal ^ :Necs(i; a).However, if hM; w2i j= :Necs(i; a), then hM; w1i j= :Necs(i; a) as well. There-fore, hM; w1i j= legal ^ :' ^ :Necs(i; a), which contradicts our assumption (aboutKi(:legal _ ' _Necs(i; a))). 24



2. Assume that hM; wi j= :Bsi (:Necs(i; a)).This implies that hM; wi j= :Ki(:legal _ :Necs(i; a)) _Ki:legal.We need to show that hM; wi j= (Ki(:legal _Necs(i; a)) ^ :Ki:legal) _Ki:legal.It is su�ces to show that if we assume that Ki(:legal) does not hold in w, andwe assume that hM; wi j= :Ki(:legal _ :Necs(i; a)), then hM; wi j= Ki(:legal _Necs(i; a)) ^ :Ki:legal.However, if the latter does not kold, then there exists w', which is indistinguishablefrom w, where legal ^ :Necs(i; a) holds. This implies that Ki(:Necs(i; a)) holds,which contradicts our assumption.3. Assume that hM; wi j= Bsi [(') Necs(i; a)) ^ (:') :Poss(i; a))].From the above assumption we get thathM; wi j= Bsi [(:' ^ :Poss(i; a)) _ (' ^ Necs(i; a))].This yields:hM; wi j= :Ki(:legal) ^Ki[:legal _ (:' ^ :Necs(i; a)) _ (' ^Necs(i; a))].We have to show: hM; wi j= [Bsi' _Bsi:'].This implies that we have to show: hM; wi j= :Ki(:legal) ^ (Ki(legal ) ') _Ki(legal) :')).It is clear that, given our assumption, hM; wi j= :Ki(:legal) holds.Therefore, in order that the desired result will be obtained we have to show that thefollowing pair of statements contradict our assumption: hM; wi 6j= :Ki(legal) ');hM; wi 6j= :Ki(legal) :'). If the above pair of statements hold, then there existsw0; w00 such that hM; w0i j= legal ^ :' and hM; w00i j= legal ^ '.However, if Necs(i; a) holds in w, then we get that legal ^ :' ^ Necs(i; a) holds inw0. This contradicts our assumption. If :Necs(i; a) holds in w, then we get thatlegal ^ ' ^ :Necs(i; a) holds in w00, which contradicts our assumption as well.Combining the above gives us the desired result.Proof of Proposition 4.4:1. Assume that hM; wi j= Bsi [:p-reachable(N; g;:doi(a))].This implies that hM; wi j= :Ki(:legal) ^Ki(legal) :p-reachable(N; g;:doi(a)).We have to show that: hM; wi j= :Ki(:legal) ^Ki(legal ) (:current goal(j; g)) _(:Ki(:legal)^ Necs(i; a)))Given our assumption, in order that the above will not hold, there should exist w1,indistinguishable from w, where legal ^ current goal(j; g) ^ :Necs(i; a) holds. On25
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