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Abstract

An artificial social system is a set of restrictions on agents’ behaviors in a multi-
agent environment. Its role is to allow agents to coexist in a shared environment
and pursue their respective goals in the presence of other agents. This paper argues
that artificial social systems exist in practically every multi-agent system, and play a
major role in the performance and effectiveness of the agents. We propose artificial
social systems as an explicit and formal object of study, and investigate several basic
issues that arise in their design.
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1 Introduction

Consider the following examples of environments involving many agents:

o A large automated warehouse uses fifty robots to fetch and store products, and serves
tens of customers at a time.

o A truck company with a high volume of activity and many branches uses a large
number of drivers and trucks to move goods across the country in an efficient way.
The scheduling of drivers and trucks at the different branches is done locally, but
affects the company’s ability to respond to demands in the future.

e A major software project employs a large number of programmers. Different pro-
grammers write different parts of the program code, but the final behavior of each
programmer’s segment can affect and is affected by the software written by the others.

Each of the above contexts involves multiple agents whose actions are interdependent:
What one does may affect the success of the other’s actions. In addition, in each of the
examples the purpose of distinct agents’ actions at any given time may be motivated by
different sources: Different robots in the warehouse may be serving different clients, two
branches of the truck company may be involved in hauling goods for different customers,
and different programmers may be handling different aspects of the software project. Ob-
viously, in all of these cases the agents face a coordination problem. Indeed, similar coordi-
nation problems arise in most any system involving many agents that operate in a shared
environment, in which the actions of one agent can affect the success of another agent’s
activities.

One extreme solution to such coordination problems is to provide centralized control
of all of the relevant activities. For example, we could imagine having a central entity
that determines the actions of all of the robots in the warehouse and ensures that no
conflict or accident occurs. Such centralized solutions, however, come with a cost. As the
number of agents and tasks involved grows, the costs in communication, synchronization,
and processing grow dramatically. Moreover, the system depends crucially on such things
as the reliability of the central element, of the communication lines, etc. In large and
complex systems, these costs can become prohibitive. At the other extreme is the purely
decentralized approach, in which the agents attempt to act in a completely independent
manner. As a result, conflicts may arise. The goal then would be to work on methods of
resolving conflicts once they arise. Clearly, however, if the cost of a conflict is dear, or if
conflict resolution is difficult, completely independent behavior becomes unreasonable.

In this work, we suggest an intermediate approach to the design of multi-agent systems:
Agents should be designed to act individually, but their actions should be restricted so
that their behavior is mutually compatible. Such restrictions on agents’ behaviors we call
an artificial social system. An artificial social system is a mechanism for coordination that



reduces the need for centralized control. Moreover, by following a well-designed social sys-
tem, agents can avoid many potential conflicts to begin with. Thus, artificial social systems
bridge the gap between the completely centralized and purely decentralized approaches to
coordination. Indeed, they allow for a wide spectrum of intermediate solutions.

Most actual systems involving many agents acting in a shared environment can be
thought of as employing some type of social system. In human societies, for example, the
social system consists of the legal system, together with various conventions regarding how
people behave. Societies of animals, too, have conventions of behavior that constitute their
social system [40]. We can also view conventions and restrictions employed in artificial
multi-agent systems as constituting a social system. Our thesis, however, is that artificial
social systems should be treated ezplicitly as a major component of the design of multi-
agent systems. Our purpose in this work is to initiate the study of artificial social systems
as an explicit and formal paradigm for design.

This paper presents the notion of artificial social systems. It is based on the origi-
nal manuscripts that presented this notion [24, 25, 38]. We describe how artificial social
systems suggest an approach to the design of multi-agent systems. Tradeoffs involved
in the design of multi-agent systems that this approach uncovers are presented, and a
methodology for design based on this approach is offered. Various issues of concern to the
distributed/decentralized Al communities (DAI/DzAI) [3, 7, 8] are shown to fit naturally
into the artificial social systems framework. Finally, we present semantics and a formal
logical syntax in which reasoning about such systems can be carried out. This work has
been followed by a number of papers that use and extend the notion of artificial social
systems (e.g., [34, 33, 39]).

This paper is organized as follows. In the next section we introduce the idea of artificial
social systems in the framework of a simple but widely applicable model. In Section 3 we
discuss a number of essential aspects in the design of a social system. In particular, we
discuss the golden mean problem in artificial societies, which we consider to be the central
problem in the design of artificial social systems. In Section 4 we discuss the general
semantics of artificial social system, and logical reasoning about such systems. Section 5
provides some final remarks, and discusses related work.

2 Social Automata

In this section we consider a simple framework in which we will demonstrate the idea
of artificial social systems. While the idea can be used in more complex settings, the
framework presented and discussed in this section already embodies many of the relevant
1ssues.

Generally speaking, a multi-agent system consists of several agents. We assume that at
any given point, each such agent is in one of several states. The agent’s state represents
the current situation of the agent, from the agent’s point of view. In each of its states, an



agent can perform several actions. The actions an agent performs at a given point may
affect how the state of this agent and the states of other agents will change. We now define
an automata-based model of multi-agent activity in which these aspects come to play. This
model will be used to study issues related to artificial social systems.

A system of dependent automata (DA system) consists of two (or more) agents, each of
which may be in one of a finite number of different local states. We denote the set of local
states of an agent ¢ by L;. The list (sq,...,s,) of states of the different agents is called the
system’s configuration. At every step, each agent performs an action. The set of possible
actions an agent ¢ can perform is in general a function of the agent’s local state. Thus, for
every state s € L; there is a set A;(s) of actions that ¢ can perform when in local state s.

Let us call the list (a1,...,a,) of actions the different agents perform at a given point
their joint action there. An agent’s next state is a function of the system’s current con-
figuration and the joint action performed by the agents. At any given point, a goal for an
agent is identified with one of its states. We assume each agent has a set of potential goals
it might like to reach. Each agent starts in a state taken from a set of potential initial
states. We assume that an agent can perform computations to plan how to attain its goal,
and to determine what actions to take at any given point. In such a model, the success of
one agent’s actions may depend in a crucial way on the other agents’ actions.

Formally, a plan for agent ¢ in a DA system is a function p(s) that associates with
every state s of agent ¢ a particular action a € A;(s). A plan is said to guarantee the
attainment of a particular goal starting from a particular initial state in a given DA system
if by following this plan the agent will attain the goal, regardless of what the other agents
do and what the initial states of the other agents are.

Clearly, computing such plans can be rather complex. Moreover, the resulting plan
might not be very useful. A plan that needs to be able to respond to any possible behavior
by the other agents may be very inefficient’ in the number of steps it takes. In some cases,
such a plan may even fail to exist!

A DA system is said to be social if, for every initial state s® and goal state s9, it is
computationally feasible for an agent to devise, on-line, an efficient plan that guarantees
to attain the goal s? state when starting in the initial state s*. DA systems in which the
sets A;(s) represent the set of actions that agent ¢ is physically capable of performing at
state s will often fail to be social. For example, in a situation where an agent waiting at
an intersection may at any point in time choose to move into the intersection, no other
agent can have a plan that guarantees it will safely cross this intersection. We shall modify
a DA system by what we call a social law. Formally, a social law ¥ for a given DA
system S consists of functions (A}, A}, ... Al), satisfying Al(s) C A,(s) for every agent ¢
and state s € L;. Intuitively, a social law will restrict the set of actions an agent is “allowed”
to perform at any given state. Given a DA system S and a social law ¥ for S, if we replace

1Unless stated otherwise, we will assume that a problem is feasible, efficient, or tractable, if there exists
a polynomial algorithm for solving it. Other assumptions can be treated similarly.



the functions A; of S by the restricted functions A!, we obtain a new DA system. We
denote this new system by S¥. Intuitively, in S* the agents can behave only in a manner
compatible with the social law 3.

From the point of view of artificial social systems, a number of computational questions
are natural at this stage. These computational problems relate to finding a set of restrictions
(called the social law) on the actions performed by different agents at different states of the
original DA system. The restrictions will usually be determined off-line before the initiation
of activity and will induce a system where agents are able to (efficiently) achieve their goals
during the on-line activity. For example, given a DA system S we may be interested in
restricting the agents’ actions by a social law ¥ to yield a system S so that either:

(a) in ST every agent has, for each of its goals s, a plan guaranteed to achieve s9;

(b) condition (a) holds, and the plans prescribed by (a) are efficient;

(c) condition (a) holds, and the problem of computing plans in S¥ is tractable; or
)

(d) both (b) and (c) hold. (In this case we consider the system S* to be social.)

Various assumptions about the structure of the DA system, for example regarding the
number of local states agents have, or the number of actions an agent can perform in a
state, may affect the above-mentioned computational problems. Analogues of problems
(a)-(d) above will apply to more complex types of systems as well. We now turn to study
a particular problem in the context of DA systems.

The following theorem illustrates the kind of computational results which we can ob-
tain regarding the artificial social systems approach in the dependent automata setting.
We first state the theorem and then discuss its interpretation. Formally, we will define
the problem of designing a social system with respect to a DA system with n agents
and an assignment of goals to each agent as follows. We are given a DA system S =
(L1,...,Ln,Co, A, Aq, ..., A, 7), where the L;’s are sets of local states of agent 7, Co C x L;
is a set of initial configurations, A is a set of actions and A4; : L; — 2A ascribes a set of pos-
sible actions for each agent in every local state. Finally, 7 is a transition function mapping
configurations and joint actions into configurations. We define the size of such a system to
be |A| + max; |L;|.?> The goals are given by sets G; C L;, fori = 1,...,n. A local state s of
agent ¢ 1s called an wnitial state if it appears in one of the configurations in Cy. We will be
interested in a social law X, such that in S¥, given any agent s and any initial state so € L;
and goal s € G;, there exists a plan p? : L; — A that is guaranteed to reach s starting
from sg.

We can show:

20ur results hold for other natural definitions of the size of the system as well. For example, they hold
is we replace the term max; |L;| by Z;(]L;]).



Theorem 2.1: Let n > 2 be a constant. Given a DA system S with n agents, the problem
of finding a social law ¥, such that in S* each agent can devise plans for reaching each
goal state from each initial state, if such a law X exists, i1s NP-complete.

Proving that a problem is NP-complete is usually taken as evidence that the problem
i1s hard to solve. No efficient algorithms are known for solving NP-complete problems,
and it is conjectured that none exist. In our case, however, the NP-completeness can be
interpreted in a positive manner as well. Indeed, the fact that the problem is in NP shows
that the verification of the design process can be done efficiently. Roughly speaking, the
process of designing a social law in the setting of Theorem 2.1 corresponds to guessing a
social law and associated plans, all of which can be encoded in polynomial space and can
be verified in polynomial time. Since this design process will usually be done before the
initiation of activity for a particular system and can be supported by automatic verification,
we get that a trial and error procedure often becomes feasible in the design stage. As we
will discuss later, the designer’s ability to attempt to solve NP-hard problems off-line in
the design stage is in general greater than the agents’ ability to tackle such problems when
they encounter a conflict on-line in the course of their activity.

The above discussion introduces a basic setting where artificial social systems can be
discussed, and a (fairly positive) basic theorem regarding it. However, the main objective of
the setting of DA systems in this paper is to illustrate the artificial social system approach;
it is by no means the most general model in which the related ideas can be discussed
and studied. One extension of this model is concerned with the case where the plans the
agents execute are not restricted to be functions of their local state, but rather can depend
on the full history of the agent’s previous states and actions. In this extended setting,
a social law is taken to be a restriction on the plans an agent might devise. We will
refer to dependent automata setting with the extended notion of a plan as the extended
dependent automata setting. If the (extended type of) social law enables to efficiently
construct efficient (extended) plans for achieving each agent’s goals from each of its initial
states, then we will say the induced extended dependent automata setting is social. In the
following, we are interested only in efficient plans, where the number of actions that might
be executed in the course of following a given plan is polynomially bounded. We are able to
show that an analogue of the above theorem (as well as its positive interpretations) holds
for this extended setting as well.

Theorem 2.2: Let n > 2 be a constant. Given an extended dependent automata setting
with n agents, the problem of finding an extended social law that induces a social extended
dependent automata setting, if one exists, 1s NP-complete.

3 Designing Social Laws

In the previous section we studied social laws in the context of dependent automata. The
same ideas apply in a much broader set of contexts. In general, we will have some model



of a multi-agent activity, and a social law will restrict the behavior of the agents in this
model. Specifically, we can identify a plan for an agent with an individual strategy in the
game-theoretic sense (or a protocol in the language of distributed systems). Intuitively,
the social law will determine which strategies are “legal” and which are not. Nevertheless,
most of the relevant issues remain the same as with dependent automata. For example, as
we saw in Section 2, a social law can (i) enable an agent to design a plan that guarantees
to attain a particular goal for which no plan exists without the social law; (ii) allow shorter
and more efficient plans for certain goals; and (iii) simplify the domain in which plan design
is performed, thereby simplifying the computational problem involved in designing a plan
to reach a given goal.

Notice that in controlling the actions, or strategies, available to an agent, the social
law plays a dual role: Roughly speaking, by reducing the set of strategies available to a
given agent, the social system may limit the number of goals the agent is able to attain.
By restricting the behaviors of the other agents, however, the social system may make it
possible for the agent to attain more goals, and in some cases these goals will be attainable
using simpler and more efficient plans than in the absence of the social system. An overly
liberal social system will allow each agent to carry out a large number of strategies. The
agent may therefore hope to be able to attain many useful goals. Other agents, however,
are also able to carry out a very large number of strategies, and strategies of different agents
are likely to be incompatible. As a result, instead of being able to devise plans to attain
many goals, an agent may end up being able to attain only a small number of goals, and
even they might be attainable only at a high cost to the agent. If, on the other hand, the
social law is overly restrictive, then the number of legal strategies available to an agent is
very small, and the likelihood of collision between different agents’ strategies can be greatly
reduced. In this case, however, the agents might be unable to attain their goals due to a
lack of options in choosing what actions to perform.

A related issue is the fact that a social system will, in many cases, determine (possibly
implicitly) what goals a given agent is able to attain, and what goals will be unattainable
to the agent. Intuitively, there may often be cases in which allowing an agent to attain a
certain goal may cause unreasonable damage to other agents. We can think of such goals as
“anti social”. The goal of hurting another agent is a blatant example of this. Less blatant
examples may be getting on a bus without waiting in line. By forcing the agents to stand
in line before getting on a bus, the social law may prevent some agents from attaining this
goal, while making it possible for other, perhaps weaker or more polite, agents to receive
fair service. We can associate with a given social system a set of socially acceptable goals
for each agent. These are the goals that the social system allows the agent to attain.

Thus, in designing a social system, the designer needs to find a good compromise be-
tween competing objectives. From a given agent’s point of view, an ideal social system
would allow the agent to be able to attain as many goals as possible, and to do so as
efficiently as possible. But what is ideal for one agent may be undesirable for another,
and vice versa. As a result, the social system should strike the right balance: It should
restrict the allowable behaviors of the various agents enough to serve the different agents



in a good manner. (What good here means will depend on the application.) We refer to
the problem of finding such a compromise as the golden mean problem in artificial social
systems. The golden mean problem as described here applies directly to the context of
dependent automata discussed in Section 2. We remark that in a given scenario, in which
we are given a model of multi-agent activity (e.g., a particular dependent automata) and a
notion of what a good balance between the needs of different agents is, there need not be
a unique social system that is good. Many acceptable social systems will usually exist for
the given scenario.

In summary, practically any effective social system must come to grips with the golden
mean problem in one way or another. In fact, we can view the design of a social system as
consisting of searching for a reasonable solution to the golden mean problem. In particular,
the computational problems we defined and investigated in the previous section are a
collection of golden mean problems in the context of the dependent automata model. In
these computational problems we assumed that all the goals are considered social, but other
assumptions can be treated similarly. The difference between the golden mean problems
we investigated in items (a)—(d) in Section 2 is in the definition of what we consider to be
a good solution. Our results in Section 2 can therefore be interpreted as a study of the
golden mean problem in the framework of a basic model for multi-agent activity.

We now consider a variant of the golden mean problem in another basic model, which
we call a one-shot social game. The model we present is somewhat simplified, for purposes
of exposition. Our aim is to see how the golden-mean problem is captured in a general
game-theoretic (i.e. strategic) setting. We start with a set S of possible physical strategies,
identical for all agents. We also assume a set G,,. of socially acceptable goals. With each
goal g € G, and agent ¢ we associate a payoff function uy(¢) that assigns to each joint
strategy in 8™ a value between 0 and 1. In the formulation of the golden mean problem
below we assume that the social restrictions on the strategies are similar for all agents. In
addition, we assume that the value of a payoff function for an agent depends only on its
current goal and the strategies executed. Hence, we can refer w.l.o.g. only to the payoft
functions of the first agent, and drop the agent’s number from the notation of a payoff
function. Given an “efficiency parameter” 0 < € < 1 we can now formulate the following
problem:

Definition 3.1: [Basic Golden Mean] Let n > 2 be a constant. Given a set of n agents,
a set S of possible physical strategies, a set G,,. of socially acceptable goals, and for each
g € Gy a payoff function u, : S — [0,1], find a set S C S of “socially acceptable”
strategies such that for all ¢ € G, there exists s € S such that ug(s,0) > € for all
oec S

This definition formalizes a particular variant of the golden mean problem in general
game-theoretic terms.> Nevertheless, this definition captures the main issue involved: In

30ther variants would be formalized in a similar fashion. The case where we have a one-shot game of



solving a golden mean problem, the designer needs to disallow some of the possible strategies
in order to ensure efficient achievement of certain goals, while on the other hand it is
necessary to maintain enough strategies in order that agents can attain their goals in a
reasonably efficient manner. Corresponding to the definition of the basic golden mean
problem is a natural computational decision problem: Given a set S of possible physical
strategies, the agents’ payoff functions and a parameter ¢, determine whether there exists
a set S that will satisfy the basic golden mean problem. In making this precise, one has to
make certain assumptions on the number of strategies, the size of G,,., how the strategies
are presented to us, and how the utilities are computed. Under what are essentially very
weak assumptions,* we can prove the following Theorem.

Theorem 3.2: The decision problem corresponding to a basic golden mean problem 1s
NP-complete (in the number of strategies and goals). If the number of goals is bounded by
a constant, then the problem s polynomaal.

As in the case of Theorem 2.1, we can view the NP-completeness result here as a
positive indication. The fact that the problem is in NP suggests that an off-line trial and
error procedure for determining the social restrictions may be feasible.

Notice that we have been discussing the golden mean problem mainly in the context
of the (off-line) design stage of an artificial social system. However, in a precise sense,
instances of this problem need to be solved repeatedly to resolve conflicts between different
agents’ intended actions. In fact, in sufficiently rich contexts it seems crucial for agents
to occasionally attempt to resolve such conflicts, thereby essentially solving a local golden
mean problem. One thing that Theorem 3.2 implies is that if agents can reach arbitrary
states of conflict, then there will be cases in which it will be computationally intractable for
them to negotiate a compromise. This can be taken as further evidence for the importance
of the design stage, or what we have been calling artificial social systems. One of the roles
of the design would be to simplify the world so that, to the extent possible, agents do not
reach unresolvable conflicts during the course of their activities. We further discuss this in
Section 3.1. The second part of Theorem 3.2, referring to the case where the number of
goals is bounded by a constant, is somewhat less important for the issues discussed in this
paper. However, it motivated a general heuristic for design that we discuss in Section 3.2.

3.1 Off-line vs. on-line

We think of the design of a social law as a chiefly off-line activity; it is performed by
the system designers before the agents start their actual activity. The agents’ actions
and plans are ultimately performed on-line in the multi-agent system. Namely, an agent

only two agents with only one goal, where the agents may have different local states, coincide with the
computational problem discussed in [26].
“Details can be found in the Appendix.



must ultimately plan a course of action and carry it out with rather stringent constraints
on the time, resources, and information available. Indeed, a sometimes crucial aspect of
on-line activity is that the resources the agent is able to apply in deciding on a course
of action may be extremely limited. The system designers, on the other hand, will often
have access to considerably greater resources for the purpose of designing the system. The
advantages of investing in the off-line design stage are threefold. First, since the designer’s
off-line resources are usually greater than the agents’ on-line resources, some problems
may be better solved by the designer than they would be solved on-line by the agents.
For example, solving, or finding an approximate solution, to an NP-hard problem may be
feasible in an off-line setting, while it may often be hopeless to handle on-line. The second,
and perhaps more important, advantage of investing in the design stage is that an off-line
design of a good social law will keep the agents from arriving at many of the conflicts to
begin with. This can result in far more effective and efficient on-line activity by the agents.
Finally, in many cases the design of a social system may be performed together with the
design of other aspects of the multi-agent environment. In cases in which an effective social
system is hard to come by, the environment may be modified in a manner that will simplify
the problem of devising the social law. Examples are adding traffic lights, or changing the
road system in various ways. Naturally, such operations are much harder to implement
on-line than they are at the off-line design stage.

We have been focusing on how the design of an effective social system can allow agents
to act individually in pursuit of their goals, thereby reducing, and in some fortunate cases
perhaps even eliminating completely, the need for agents to communicate and explicitly
coordinate their actions. In sufficiently complex situations, however, some communication
and explicit coordination between the agents is inevitable, and in others it may be desirable.
Indeed, a central concern in distributed and decentralized Alis the design of communication
and interaction protocols [2, 14]. Our framework applies equally well to such situations.
For agents in a multi-agent setting to communicate, they need to have a common language,
specific protocols for interaction, and conventions for when and how these are used. A good
social system will choose these so that the communication is efficient and effective. Again,
by making the right choices in the course of the off-line design of a good social system, we
may be able to improve the on-line behavior of the agents and increase their benefits.

3.2 Social routines: A heuristic for design

Imagine that there is a fixed number of basic tasks that an agent needs to be able to
perform successfully in order to attain its goals. These may, for example, be the basic
operators used in the agent’s planning program (e.g., go_from(A) to(B) where A and B
are neighboring locations, or put_down(T'), where the agent is currently holding 7'). This
is the type of context in which high-level planning is normally studied [1].

In many cases, the set of basic tasks is rather small, while the class of behaviors that
the agents can generate using them is rich and complex. We call the implementations of



these tasks primitive routines. We say that a set of such routines is social if an agent
following a primitive routine in the set is guaranteed to successfully performed its desired
task, so long as the other agents behave only according to the routines in this set. Given
a set of basic tasks, an implementation of them by a social set of primitive routines can
provide the agents with a simple and effective social system. For an example of a social
primitive routine, consider the task of filling a glass with water. Normally, this may be
implemented by first going to the sink, and then filling the glass. A social implementation,
however, could consist of first entering the queue of agents waiting for the sink, and using
the sink when the agent’s turn comes. In this case, the social implementation guarantees
that anyone who wants to use the sink will eventually be able to do so, while in its absence,
weak or slow agents might be unable to fill their glasses on a bad day.

Given a small number of basic tasks, a social law can thus be reduced to requiring
the agents to use only routines from a prescribed set of carefully planned primitive social
routines. The task of verifying that a set of primitive routines is social is likely to be
manageable. For example, one can associate the fact that we have a small number of
basic tasks (for which we have to find corresponding social primitive routines) with the
restriction of the number of primitive goals in the golden-mean problem to be bounded by
a small constant. As we demonstrated, this case is computationally tractable. Moreover,
an agent provided with such routines is spared the cost of verifying that a plan the agent
devises is social. As long as the agent uses only social primitive routines, the overall plan
1s guaranteed to be social. An obvious setting that can be viewed as using social routines
for effective overall behavior is driving: Traffic laws concentrate on drivers’ behaviors in
a small set of specific types of situations, having to do with intersections, passing, and
similar issues. Similarly, in the three examples from the introduction, the use of social
primitive routines, at least in a large part of the activity, can greatly simplify the task of
coordinating compatible behavior. In particular, in the case of programmers working on a
software project, the fact that the verification problem is reduced considerably once social
primitive routines are used is of paramount importance. In the typical case, it is extremely
difficult to verify that a program consisting of many processes working concurrently actually
does what it is supposed to do.

3.3 Social systems and conflict resolution

Today more than ever before people face the problem of designing artificial environments.
As illustrated in the three example contexts presented in the introduction, the agents
operating in these environments may be robots, they may be people, and they may even be a
heterogeneous collection of people, robots, and computers. The design of such environments
is generally a very difficult problem.

We can consider the fundamental problem of the field of distributed/decentralized artifi-
ctal intelligence (DAI/DzAI) [3, 7, 5] to be how to design artificial agents and environments
for them to operate in. For such a design to be good, it should allow the agents to fruitfully

10



coexist and effectively function to obtain particular goals of interest. A substantial amount
of explicit and formal work in distributed/decentralized artificial intelligence has gone into
questions such as:

e How should artificial agents (robots or computer programs) negotiate?
e How should they strike deals with each other?
e What are good schemes for resolving conflicts among artificial agents?

o How do answers to such questions affect the structure of the agents?

We think of an artificial social system as a set of conventions and rules restricting the
behavior of the agents. A major purpose of these conventions is, of course, to keep the
agents from reaching conflicts to begin with, wherever possible. But avoiding conflicts by
using an appropriate social system is not always attainable, since it is not always possible
to consider all possible scenarios in advance. Moreover, in some cases the cost of avoiding
conflicts of a particular type may be higher than the cost of resolving them once they occur.
A comprehensive social system must therefore also contain a component that describes
how conflicts are to be handled once they occur. The work on negotiations [18], deals
[30], consensus [27], interaction protocols (e.g., [2]), as well as many other forms of conflict
resolution can be viewed as handling this very delicate and complex aspect of the design
of a social system.

4 Logical Reasoning about Social Systems

The previous sections introduced and investigated basic issues in artificial social systems
and their design. In particular, we used an automata-theoretic and game-theoretic models
in order to introduce and investigate computational aspects of artificial social systems. In
this section we add another tool for reasoning about social systems. Namely, we present
a general logical framework for reasoning about social systems. This will enable to supply
a general semantics for artificial social systems, and will enable formal logical reasoning
about the elements of social systems.

4.1 The semantics of Artificial Social Systems

As argued in [24], providing a clear semantics for artificial social systems is a necessary step
in their design. In particular, it will enable formal logical reasoning about social systems.
In this section we gradually construct a model for an artificial social system. We begin by
defining a general multi-agent system:

11



Definition 4.1: A multi-agent systemis a tuple S = (N, W,K4,...,K,, A, Abley, ..., Able,,Z,T),
where:

o N={1,...,n} is a set of agents;

o W is a set of possible worlds;

o KC; CW x W are accesstbility relations (we assume that K; is an equivalence relation

foralli € N ),
o Ais a set of primitive individual actions;

o Able; : W — 24 is a function that determines the possible physical actions for agent
¢ (in any given world).

o 7 is a set of possible external inputs for the agents.

o T Wx(AXI)" — WU{—}1is a state transition function. This function determines
what the next state of the world is going to be, as a function of the actions that each

agent performs, and the input each agent receives in the current world. T'(w, (a, 1)) =
— iff there exists an action a; in (a, I) such that a; ¢ Able;(w).

The structure of the set W of possible worlds, and of the possible worlds themselves will
be vitally important in any implementation of a multi-agent system. Roughly speaking, we
are thinking of these along the lines of the situated automata literature [31], and the related
work on knowledge in distributed systems [16]. The K; relations are intended to capture
the agents’ knowledge. The possible external inputs Z are intended to capture messages an
agent may receive from outside the system. In particular, we can model dynamic receipt of
goals by an agent, by having the agent receive external inputs sent by its master specifying
new goals to pursue. Notice that the transition from one world to the next, specified by
the function T', depends on the “joint action” comsisting of the actions performed by all
the agents. Thus, the action an agent performs will usually not uniquely determine the
change the world will undergo. There will be many worlds that may potentially result from
a given agent performing a specific action.

Within the context of such a multi-agent system, we define a strategy or plan for agent ¢
to be a function Ch; : W —— A that satisfies:

1. If (w,w") € K;, then Ch;(w) = Chy(w')

2. Chi(w) € Able;(w) for all w € W.
Ch;(w) is intended to represent the action that agent ¢ chooses to perform (according to
the plan) when in w. The first condition here requires that this action depend only on i’s

knowledge; ¢ should choose the same action in worlds it can’t distinguish from one another.
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The second condition captures the idea that the action chosen must be physically possible
for the agent to perform.

We identify an agent’s goal g within a multi-agent system with a set W, C W of worlds.
Intuitively, these are the worlds in which the goal has been achieved. Given our formal
model, we say that in world w, ¢ has a plan for attaining g if + has a plan that, starting in
world w is guaranteed to yield a world in W,.

Intuitively, we can think of the Able; functions as corresponding to a “physical law”,
since they specify what actions the agents are physically capable of performing. A first
step in extending our model to incorporate a social law is to define a normative system,
which further restricts agents’ actions:

Definition 4.2:

A normative system extending a multi-agent system S is defined to be the pair N' =
(S,{Legal;}i<,), where Legal, : W — 24. Moreover, the functions Legal; are required to
satisfy the following three conditions:

1. (epistemological adequacy): Legal,(w) = Legal,(w') for all (w,w’) € K;;
2. (physical adequacy): Legal,(w) C Able;(w) for all ¢ and w;

3. (non-triviality): Legal,(w) # 0 for all ¢ and w; .

Intuitively, Legal,(w) specifies what actions agent ¢ is allowed to perform in w, according
to the underlying normative code. Under this interpretation, the epistemological adequacy
requirement states that each agent will always know what actions it is allowed to perform.
The physical adequacy requirement says that the actions the agent is allowed (or required)
to perform are physically enabled. Finally, the nontriviality condition requires that an
agent should always have some action it is allowed to perform. Implicitly, we are assuming
that a null action, corresponding to “doing nothing”, should be an explicit action. The
reason for this is that there may be cases in which a normative system requires the agent
to perform some active action (e.g., put out a fire). This is achieved by having Legal,(w)
not contain a null action.

Given a normative system N = (5, {Legal; };<), we say that a strategy, or plan, is legal
with respect to A, if in addition to being a valid strategy in S, all chosen actions are always
legal actions. In other words, Condition 2 from the definition of a strategy is strengthened

to: 2. Ch;(w) € Legal,(w) for all w € W.

Our intention is to define a social system. Clearly, a social system is a particular type
of a normative system. However, a social system has some additional structure. There is
nothing inherent in the structure of a normative system that will guarantee that nothing
bad ever happens. We will, in fact, ask even more than this from a social system. We
will also require that agents should always be able to attain any “reasonable” or “socially
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acceptable” goal. Thus, while the social system might disallow an agent to eat all of the
Birthday cake leaving nothing for the others, it will make it possible for any agent that
wants to eat a piece of the cake to do so. We capture these ideas as follows. In coming
to design a social system, we start out with a set W,,. of “socially acceptable” worlds.
Intuitively, the social system will be required to guarantee that the state of the world will
never exit this set, so long as the agents obey the rules of the social system. In addition,
we have a set G, of “reasonable”, or “socially acceptable” goals, which an agent should
always be able to attain. Given a multi agent system S, let us denote by Wy the set of
states that the world may be in “initially”. We will assume for simplicity that Wy C W,,,.
Given a normative system extending S, we say that a world is legally reachable if it is
reachable from a world in Wy by a sequence of steps in each of which all of the agents act
according to the rules of the normative system.

Formally, a social system for S consistent with W,,. and G,,. will be a normative system
extending S that satisfies:

1. A world w € W is legally reachable only if w € W,,,..

2. For every legally reachable world w, if the goal of agent ¢ in w is g € G,,., then there
is a legal plan for ¢ that, starting in w, will attain ¢ so long as all other agents act
according to the normative (social) system.

Notice that W,,. and G,,. are, as stated, not necessary orthogonal to each other. In
fact, given the level of abstraction at which we treat our states of the world (we haven’t
made any restrictions on what they can model), one could technically do away with either
Woe OF Gyoc, and make do solely with the other. However, we introduced both because we
view each of them as serving to specify distinct aspects of the system. W, is intended to
capture more global aspects of the behavior, perhaps more of the so-called “safety” and
“fairness” aspects of the system. The purpose of G, is to guarantee that agents be able to
act in a somewhat useful way; this would very roughly correspond to “liveness” in formal
specification of systems.

The sets Wi, and Gy, are used by the designer in the process of designing the social
system. Based on these sets, she is able to incrementally construct the rules of the system,
and check them for suitability. In practice, we expect that in some cases the design stage
will include some updating of the W, and G,,. sets, as experience is gained and the
designer becomes better acquainted with the environment the agents are to operate in
and what is reasonable to expect there. Once the design stage is over, we are given an
appropriate social system. As remarked above, this is a particular instance of a normative
system. This system will be used in two later stages of the process: By the manufacturer of
agents, that are to act according to this social system, and by the agents themselves once
they are in operation. The manufacturer will need to reason about whether his product
will act in accordance to the rules of the system, while the agent will need to reason about
the world, its own actions, and the actions of others, in the course of planning and acting
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in the actual environment. In both cases, the set W, will no longer play a central role,
and the reasoning will be performed with respect of the set of legally reachable worlds. (In
fact, after the design stage, we can redefine W, to be the set of legally reachable worlds.)

The above definition of a social system captures the basic insight behind the method-
ology of artificial social systems. The definition can be extended in various ways. One
extension consists of explicitly modeling the utilities that agents obtain from attaining
goals via different routes. For example, an agent may want to get to the airport, and would
prefer to be driven there over taking the bus. Thus, the same goal (getting to the airport)
can be attained via routes yielding different utilities. Formally, utilities are added to a
social system (S, {Legal;}i<n, Gsoc, Wioe) by adding a function ue4 : Wy — [0, 1] for every
agent a and goal g € Gyp. Intuitively, the value of u,4(w) represents how pleased a is
about the state of attainment of g in the world w.

4.2 Reasoning about social systems

One of the main benefits of having a semantic definition of artificial social systems is the
ability to reason about such systems. This reasoning can be performed by the designer,
when evaluating the impact of adding or deleting various laws from the system. The
manufacturer of agents (e.g., robots) that are to function in the social system will need to
reason about whether its creation will indeed be equipped with the hardware and software
necessary to follow the rules. Finally, agents within the system can reason about the state
of the world and about what they and other agents need to do, based on their observations
of the environment and on the social system.

In order to be able to reason formally, we need to decide on a language. For simplicity
of exposition, we will choose a propositional language. The basic formulas will consist of
a set ® of primitive propositions, including distinguished atoms social and legal, corre-
sponding to the statements that the world is social and that the world is legally reachable,
respectively. In addition, we have the following facts dealing with the ability of agents to
perform actions in a given world: For every agent ¢ € N and action a € A, Pos,(t,a),
Necy(t,a), Poss(t,a), and Necy(i,a) are formulas (read respectively as: a is physically
possible for agent i, a 1s physically necessary for agent ¢, a is socially possible for agent ¢,
and a is soctally necessary for agent ¢). Later on we will also add basic formulas that deal
with agents’ goals and their attainability. We close the basic formulas under negation and
conjunction, as well as under knowledge operators K; for : = 1,...n. The knowledge op-
erators K; will capture knowledge with respect to the physical multi-agent system. Much
of the agents’ planning and reasoning, however, will be based on the assumption that all
agents are acting socially, or according to the rules. For this we will add an operator B} for
every agent ¢, intended to capture his beliefs generated by the assumption that the world
is legally reachable.

A model for this language will be a pair M = (S, 7), where S is a social system, and
7 :® — 2% is a function associating with every primitive proposition the set of worlds

15



in which it holds. We now define when a formula ¢ is satisfied in a world w of M, which
we denote by (M, w) |= ¢. The definition is by induction on the structure of .

(a) (M, w) |= ¢ (for p € @) if w € 7(¢p).

(b) (M, w) = socialif w € Wiee.

(c) (M,w) = legal if w is legally reachable.

(d) (M, w) | Pos,(i,a) if a € Able(w).

(e) (M,w) |= Necy(i, a) if Ables(w) = {a}.

() (M, w) = Pos(i,a) if a € Legal,(w).

(8) (M, w) |= Nec,(i,a) if Legal;(w) = {a}.

(h) (M, w) | —p if (M, w) |~ ¢.

(i) (M,w) oAt if (M,w) = ¢ and (M, w) =3

(G) M,w) | K;p if (M, w") = ¢ for every w' satisfying (w,w') € K,.
(k) (M, w) = Bip if (M, w) = K;(legal = ¢) N ~K;—legal.

The definition of the social belief operator B in clause (k) is an instance of “belief as
defeasible knowledge”, as defined in [23]. While B¢ is a notion of belief, in that B¢ may
hold when ¢ does not, the definition of B? in clause (k) gives us a rigorous semantic handle
on when facts are believed, and when they are not.

We remark that our choice of having only single actions as the subject of our formulas
1s not sufficiently general to express all of the facts about possibility and necessity that are
encoded in the Able; and the Legal, functions of M. We made this choice because our
discussion will only involve statements of the simpler type. Extending the language to talk
about sets of actions can be done in a straightforward way.

We say that a formula ¢ is valid in M, denoted by M |= ¢, if (M,w) |= ¢ for all
worlds w € W. The formula ¢ is valid, denoted = ¢, if it is valid in M for all models M.
Satisfiability is defined based on validity in the standard fashion. Given our choice of
syntax and its semantics, we can now study what the valid formulas are. Clearly, there are
some obvious validities, such as the axioms of propositional logic and the modal system
S5 for the knowledge operators. In addition, the fact that Able;(w) O Legal,(w) # 0
induces a particular relationship between the various necessity and possibility formulas.
Another property of our formalism i1s that we assume that an agent performs a single
action in every world. As a result, if an action a is socially necessary at a given point,
then every other action b is not socially possible there. More instructive is the relationship
between knowledge and social actions in our models. The key facts are that = Necs(7,a) =
K;Necs(i,a) and |= Poss(i,a) = K;Poss(i,a). Let us now consider a number of valid
formulas that illustrate the power of our framework.
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Proposition 4.3:

The following are valid formulas in our language:

1. E Bf(¢ V Necs(i,a)) = (Bfe V Bf Necs(t,a))
2. = =Bf~Necy(i,a) = BfNecys(t,a) V K;(—legal)

3. F Bil(p = Necy(i,a)) A (mp = —Pos,(i,a))] = [Bl¢ V B{~p]

This proposition illustrates the relationship between social necessity and social belief.
The first clause says that if an agent believes that either ¢ holds or it must perform the
action a, then the agent must explicitly believe one of these facts: It either believes ¢ or
believes that it must perform the action a. The second clause is self explanatory. The third
clause says that if a fact ¢ determines whether or not the agent is allowed to perform the
action a in the current world, then the agent must either explicitly believe ¢ or it must
explicitly believe its negation. Properties such as those presented in this proposition tell
us something about the structure of the Legal, functions. These properties will guide the
designer in constructing these functions (restricting the agents’ actions). In addition, these
properties can be used by the agents in reasoning about other agents’ knowledge and in
learning about the world by observing other agents’ actions.

Goals and action in a social system

A main purpose of an artificial social system is to provide a framework in which the agents
will be able to plan, act, and thereby manage to satisfy their goals. The reasoning presented
above did not include issues related to agents’ goals, such as satisfaction of goals, etc. We
now extend the language to allow such reasoning. For simplicity, we will assume that in
any given world an agent may have at most one distinguished current goal. The identity of
this goal may change dynamically over time as a result of the agent receiving input from
an external source, or as a result of the current goal being satisfied, or perhaps even by the
agent interacting with other agents. In any case, the basic idea is that an agent actively
pursues its current goal at any given point in time. To reason about such goals, we add
the formulas of the form current_goal(i, g) to the language, for every agent ¢ and goal g. Of
course, current_goal(i, g) will hold whenever g is agent i’s current goal.

Recall that we have associated with every goal g a set W, of the worlds at which g is
satisfied. In this sense, a goal can be thought of as a proposition. Satisfying a goal then
coincides with satisfying the corresponding proposition. We will therefore treat goals as a
special case of propositions and formulas. In order to reason about satisfaction of goals,
we want to be able to talk about when a set T' of agents can cause a fact ¢ to be satisfied.
Here we are mainly interested in social reachability, by which we mean that the agents in T
have a (joint) plan consisting solely of socially acceptable actions that is guaranteed to
attain @, so long as all other agents follow the rules of the social system. We denote this by
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s-reachable(T, ¢). In analogy to social reachability we also define physical reachability (in
this case we consider all physically possible actions and plans). The corresponding notation
in this case will be p-reachable(T, ¢). We would also like to be able to reason about what
will happen if a certain action will actually be executed. In order to do so we add appro-
priate parameters to the reachability operators. We will write p-reachable(T, ¢, do;(a)) if
p-reachable(T, ¢) holds in cases where agent ¢ executes action a in the current world. We
can similarly define the parameter to be any element in the closure of the do;(a)’s under
conjunction and negation. Similar parameters can be used in the s-reachable operator.

We can now formulate the two conditions in the definition of a social system in terms
of s-reachable:

1. | legal = —s-reachable(T, —social) for all sets T'C {1,...,n} of agents.

2. | legal A current_goal(i,g) = s-reachable(i, g) for every agent ¢ and goal g € G-

Given the above formalism, the designer of the system and its users can reason about
actions, goals and their achievement. For example, imagine that in a certain socially
acceptable situation Alice needs to move to the other side of a door in order to reach a
certain socially acceptable goal g, but she can do so only if Bob will first open the door.
In this case, our designer will deduce that the social system must order Bob to open the
door. Less straightforward is the following type of reasoning: Assume that David asks Bob
whether Bob believes that Alice’s goal is to achieve g. Then if Bob believes that Alice
cannot attain g unless he opens the door, and he is not forced to open it, then Bob can
deduce that g is not Alice’s current goal. The following proposition demonstrates that such
types of reasoning are supported by our formalism.

Proposition 4.4:
The following are valid formulas in our language:
= Bf[—p-reachable(N, g, ~do;(a))] = [Bf(—current_goal(j, g)) V Bf(Nec,(i,a))]
= [legal A =p-reachable( N, social, do;(a))] = —Pos,(,a)

Notice that the first part of the proposition can be considered as a formalization of
Bob’s reasoning in the previous example. The second part captures potential reasoning of
the designer when disallowing some of the actions by the social law: if in a social situation
agent ¢ has an action that will necessary lead to an asocial situation, then the designer has
to conclude that this action must be socially impossible.

High level social laws

In our semantic model we have been treating the social law as a restriction on the Able;
functions, or on the actions that the agents can perform in a given world. However, in
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general we expect the social law to be stated in terms of some high-level formal language.
We now show how it is possible to bridge the gap between the two, by giving examples of
definitions of high-level rules in terms of the language defined above. For example, imagine
that we want to have a rule that states that whenever the circumstances satisfy a fact ¢
(say, i’s house is on fire), then all members of set A must help ¢ to attain ¢ (say, put out

the fire). We say that M enforces the rule should_help 4 ;(p, ) iff
M = ¢ A s-reachable g 31 = s-reachable;t).

Another typical rule may be that whenever the question arises, ¢ must prefer attaining ¥
over attaining 6. As before, we now say that M enforces should_prefer;(1, 6) iff

M [ [s-reachable;(¢) A —s-reachable;(6 A s-reachable;(v)) A

—s-reachable; (¢ A s-reachable;§)] =  —s-reachable;6.

We may, for example, wish to have ¢ notify j whenever ¢ believes that ¢ holds. This
can be formalized by: The system M is said to enforce should_notify,, j(¢) iff

should_help; ;(B; ¢, B; B ¢).

Of course, we could go on with a long list of rules now. Moreover, some of our definitions
may be modified slightly to capture distinct senses of these and other terms. We hope
that the reader is convinced by now that our semantic definitions and basic propositional
language provide us with means to express high-level rules in a rigorous and concise fashion.

5 Conclusions and related work

There is a significant body of literature concerned with issues related to topics discussed in
this paper. This includes work in the areas of organization theory (see [20],[12],[20]), team
theory ([21]), and DAI (see for example [11]). The related work in these areas of research
is especially concerned with the design of agents’ roles and communication structures that
enable cooperative achievement of a common goal. Our work on artificial social systems
concentrates on a somewhat complementary issue: the off-line design and computation
of laws that will enable each agent to work individually and successfully towards its own
goals during the on-line activity, provided that the other agents obey these laws. Additional
related work includes the synthesis of multi-agent programs ([28]) and work on cooperative
discrete event systems (DES) ([29]). The artificial social systems approach to design talks
about two essential stages in the design process. First, general rules governing the behavior
of agents are given (this is the “social law”), and then the behavior of each agent will be
determined, either by the designer or by the agent, in a fashion consistent with these
rules. This two-stage process can be used as a methodology for the design of discrete event
systems as well. For further discussion of this connection, see [35].

Society metaphors have been proposed before in the Al literature, albeit in somewhat
different contexts. Minsky uses a society metaphor in his work on the society of mind [22].
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The notion of social choice is an important element in e.g. the work of Jon Doyle [10].
Finally, social metaphors appear also in the works of Fox, Kornfeld and Hewitt, Malone,
and Simon ([12], [17], [20], [36]) concerning organization theory. We treat the notion of
an artificial social system in a relatively narrow sense, and with a particular point of view
in mind. We wish to develop a theory to support the design of multi-agent environments,
and to assist the reasoning necessary in creating or modifying agents to comply with a
given social system. Our treatment does not attempt to subsume any of the other uses of
society metaphors in Al sociology, or ethology. We find the use of the term social system
appropriate for our purposes because of the analogy to social order in natural (human
and animal) populations. We are specifically interested in the context of loosely-coupled
agents following uncorrelated and dynamically changing goals. Our thesis is that a society
metaphor has an important role to play in this context, so long as sufficient care is taken
in defining, studying, and applying social systems to multi-agent activity.

Much work has been devoted to an explicit and formal study of the centralized approach
and of the on-line resolution of conflicts (e.g., [19], [15], [37], [30],[18]). Our work is the
first to discuss explicitly and formally the computational mechanism that applies for non-
centralized intermediate solutions.

In spite of the generality of our work, we wish to emphasize that our work in no way
diminishs the crucial importance of mechanisms for interaction and communication among
agents, nor the significance of the study of effective representations for agents. Some of
the work developed in LIFIA [2, 9] provides considerable progress in these complementary
directions. The discussion of various ways of modeling agents is of significant importance to
the coordination between agents. Further study of artificial social systems may need to take
various representation levels into account while addressing the construction of useful social
laws. Indeed, our discussion on high-level social laws is in the spirit of the discussion on
bridging the gap between intentional and reactive agents in [9]. Moreover, as we explained
in Section 3.3, elaborated communication and negotiation mechanisms (as discussed in [2])
may serve as essential components of a social law.

Our work does not take into account the incentives agents have for cooperation. Some
of the work in CNR [6, 4] has been concerned with issues such as defining goal adoption
as a basic form of cooperation, and with the effect of social power on cooperation among
agents. Although some of our technical machinery may enable to express concepts such as
goal adoption, our emphasis is on the design of artificial systems where agents are assumed
to conform to every law prescribed by the system’s designer. Our work bridges the gap
between centralized and decentralized approaches to coordination where agents are law-
abiding agents. Extending work on Artificial Social Systems to include a treatment of
cooperation incentives is one of the most challenging directions for future work.

A particular case study of the design of a social law is presented in [34]. There, the
authors investigate traffic laws for mobile robots that operate on an n by n grid. They
present nontrivial laws that allow the robots to carry out respective tasks without collision
at a rate that is within a constant of the rate the tasks would take each of them if it had
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the whole space to itself. This is an example of how appropriate off-line design of social
laws guarantees very effective on-line behavior. In [33] the authors present a novel model
that defines multi-agent systems while referring explicitly to the notion of social law. In
the framework of this model they investigate the automatic synthesis of useful social laws
and give precise conditions under which the problem becomes tractable. The treatment
presented in that work, while having additional features of its own, can be considered
an extension of the work on social automata presented in Section 2. In addition, that
work discusses the conditions under which the problem of algorithmically synthesizing a
social law becomes tractable. This work has been extended to non-homogeneous dynamic
social structures in [39]. In a complementary work (see [32]) Shoham and Tennenholtz
considered the interesting case of conventions and laws that are not determined off-line
before the initiation of activity, but rather emerge during the on-line activity of the system.
Their research concentrates on understanding how different agent behaviors and system
characteristics affect the efficiency of convention evolution. Their work can also be viewed
as a (nontrivial) extension of this one: Standards of behavior that are found to be efficient
can be used as social laws that will lead to the successful emergence of specific useful
conventions.

In most any environment involving many agents, the actions and behaviors of an agent
affect and are affected by the actions of others, at least to a certain degree. In such settings,
an agent’s behavior is invariably somewhat different than what it would be had there been
no other agents to consider. As a result, practically every multi-agent environment has a
social system of some sort. This system may have been designed a prior: in a careful fashion,
or it may have evolved in various ways. It may be stable or it may change dynamically.
In any case, however, we claim that it is there. Moreover, we argue that artificial social
systems play a major role in the overall performance of agents in multi-agent systems. As
a result, we claim that they deserve to be studied explicitly and formally, and that their
role should be considered in the design and implementation of multi-agent systems. The
study of artificial social systems we presented suggests a new perspective on multi-agent
activity, one that gives rise to new and interesting problems. The last couple of years have
seen a considerable amount of research initiated around the idea of artificial social systems.

Appendix: Proof of Theorems

Proof of Theorem 2.1: In order to show that the problem in NP we first observe
that any social law can be encoded in polynomial space. Notice that the size of a plan
for agent 7 is bounded by |L;| - |A|, and therefore is polynomial. Given this fact and since
there are only polynomially many pairs of initial states and goal states, we get that the
desired set of plans (which guarantee reaching from the initial states to the goal states in
the restricted system), if one exists, can also be encoded in polynomial space. It remains
to show that a verification that the plans indeed guarantee the achievement of the goals
from the initial states, given the social law, can be done in polynomial time. This will be
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done by a backward chaining procedure in the restricted system (i.e., in the system S~
where the actions of the agents are restricted by the law X). Let p be a plan for agent
¢t that should guarantee reaching from initial state s to a goal state s9. We consider the
configuration space of the (restricted) dependent automata, and initially mark as “good”
only the configurations where agent ¢’s state is s?. The procedure continues in iterations
where in each iteration additional configurations are marked as “good”, if the action that
p selects in them leads to a configuration already marked as “good”. The process stops
when there are no more configurations that can be marked good. The plan p guarantees
reaching from state s to state s9 if and only if all the initial configurations of the system
where the state of agent ¢ is s are marked “good” at the end of the above process.

We now prove that the problem is NP-hard by a reduction from 3-SAT [13]. Assume
we are given an instance o of 3-SAT, and let k be the number of clauses in 0. We assume
that the dependent automata has two identical agents. For each of them, there is a single
initial state sq, a single failure state bad, and k goal states s7,...,s], each associated with
a single clause of 0. We define the set A of possible actions to contain an action for pair
(c,1), where c is a clause in o, and [ is a literal (or the negation of a literal) such that I
is one of the disjuncts in ¢. Thus, A consists of at most 3k actions. We now describe
the transition function 7. When the first agent performs the action (¢,!) and the second
agent performs (c’,l') when they are both in the initial state, the following happens. If the
actions conflict, by which we mean that [ is the complement of I’ (either [ = =’ or I' = —),
then both agents move to their respective bad states. Similarly, if ¢ = ¢’ but [ £ I’, then
again they both move to bad. If, however, [ and I’ are not complements, and if ¢ = ¢’ then
I =1, then the first agent moves to the state corresponding to clause ¢, and the second to
the state corresponding to clause ¢’. All states other than the initial states are sinks; once
there, an agent will never move to another state.

We now claim that o has a satisfying assignment if and only if the DA just constructed
has a social law as desired. Assume that 7 is a satisfying assignment for . We define the
social law ¥ to allow only actions (¢, ) where [ is true under 7. It is obvious that with this
law, no agent will ever reach the bad state, since the social law guarantees that the agents
will never generate conflicting actions. Since 7 is a satisfying assignment, it follows that
for each clause c in o there is at least one literal I, € c that 1s true under «. It follows
that an agent can reach the goal state corresponding to ¢ by performing (c,l.). It follows
that each agent has a plan to reach each of its goal states, and we are done with the only
if direction. It remains to show that if a social law of this type exists, then o is satisfiable.
Let X be such a social law. Clearly, it does not allow an agent to perform an action (¢, 1)
in the initial state, while the other one performs a conflicting action (¢’,{’). In addition,
for each clause ¢ € o, only one action (c,!) is allowed. It follows that for every literal [
such that some action (¢,!) is allowed by X, no action (¢/,1') where I’ is the complement
of [ is allowed by X. As a result, ¥ defines a partial assignment to the literals of o. Since X
enables each agent to obtain any goal state from the initial state, it follows that every
assignment 7 that is consistent with the partial assignment induced by ¥ is guaranteed to
satisfy 0. We conclude that the existence of a social law X of the desired type implies the
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satisfiability of the 3-SAT instance o. |

Proof of Theorem 2.2: The fact that the problem in NP-hard is proved as in Theo-
rem 2.1. We now prove that the problem is in NP.

We will take a social law to be a set of plans for each agent, where a plan is associated
with any pair of initial and goal states of each agent. We will show that we can guess
and encode such social laws in polynomial space and verify that they are satisfactory in
polynomial time. This will show that the problem is in NP. Notice that we require each
plan to succeed no matter what the initial states and goals (and hence plans) of the other
agents are. The fact that the plans constitute a social law, makes them common knowledge
(although an agent will not know which plans are actually executed by the other agents),
which is crucial for the proof of this theorem.

We will prove that the problem is in NP, by showing that if an appropriate plan exists,
then it can be replaced by a plan that can be encoded and verified efficiently. Consider a
plan p for agent i for reaching from one of its initial states to one of its goal states. The
number of actions and observations (i.e. states visited) that might be made along any
execution of p is polynomial (by our requirement.) Now, any assignment of initial states
and goals for the other agents will correspond to one sequence of polynomial length of
observations and actions induced by p. Since there are no more than polynomially many
such assignments (of initial and goal states) there are no more than polynomially many
such sequences. Combining the above, each plan p corresponds to polynomially many
sequences, each of which is of polynomial length. These sequences are equivalent to the
plan p and can be encoded in polynomial space. The verification that p achieves the goal
is done by simulating the behavior of p (as described by the above concise representation)
for any possible initial configuration and any possible behavior of the other agents (there
are polynomially many such behaviors and they are again encoded concisely.) Combining
the above, we get that the problem is in NP. I

Proof of Theorem 3.2: For ease of presentation, we will use the following assumptions:

1. There are only two agents. We refer to the agents as I and II. The case of any other
constant number of agents is treated similarly.

2. We assume that both agents have the same set of possible physical strategies. More-
over, there is a given enumeration S = sy, ..., s,, of the strategies.

3. There are k goals: g1, ..., gr. For each goal g; there is a corresponding payoff function.
Such a payoff function associates with each element (s;,s;) € S xS a number between
0 and 1. This number stands for the payoff of (w.l.o.g) agent I when it has the goal
g1 and executes the strategy s; while agent II executes s;.

With each goal g; we associate an m x m matrix M;. The value of the (7, j)’th term
in M; will be the payoft for agent I when its goal is g; and it plays strategy s; while agent
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IT plays s;. Given a subset s of the numbers between 1 and n, we define M} to be the
sub-matrix of M; generated by deleting each row and column whose number appears in
s. The golden mean problem turns into: Find s s.t. each matrix M} will satisfy that the
maxmin on the its rows is greater or equal to e.

We can now prove theorem 3.2:

The problem is in NP: We guess the strategies that are to be deleted, and then we
check that for every goal there is a row in the appropriate sub-matrix that remains after the
deletion and contains only 1’s. The case where the number of goals is bounded by a constant
will turn out to be polynomial, since we have to choose only a constant number of strategies
(one for each goal) from the set of strategies. Therefore, there are only polynomially many
such selections, each of which can be checked as mentioned above (in polynomial time).

We prove NP-hardness by reduction from SAT. We associate with each clause in the
SAT formula a matrix. The ¢’th row and 2’th column of this matrix correspond to the
variable z; if 1 <: < n, and to the literal —z;_, if n +1 <+t¢ < 2n, where z;,...,, are
the variables in the appropriate formula. Each entry in the matrix of the form (¢,¢ + n),
or (¢ + n,7) will contain the value 0, and other entries in the matrix will contain a 1 in
a certain row if the literal associated with its number appears in the appropriate clause
and 0 otherwise. A similar thing is done for columns. Now we take ¢ = 1, and we have a
reduction to the golden mean problem. If a golden mean exists, then we can find a satisfying
assignment by substituting 1 for any literal that corresponds to a row that is not deleted
(if the row that corresponds to a literal and the row that corresponds to its negation are
both not deleted then we can w.l.o.g assign 1 to one of them and 0 to the other). Notice
that if a golden mean exists then in each sub-matrix created by the appropriate deletion
there is a row with all 1’s. Thus, we get that the literals corresponding to these rows will
satisfy the appropriate clauses. On the other hand, if there is a satisfying assignment, then
we will throw the rows and columns that correspond to literals that get the value 0, and
will keep the others. It can be easily verified that the above gives us the desired result. I

Proof of Proposition 4.3:

1. Assume that (M, w) = Bf(¢ V Nec,(3,a)).
This implies that (M, w) | K;(—legal V ¢ V Necs(3,a)) A 7 K;~legal.
We have to show that (M, w) = (K;(—legalVv o)V K;(—legalV Nec,(z,a))) A~ K;—legal.
It suffices to show that (M, w) = (K;(—legal vV ¢) vV K;(—legal vV Necs(3,a))).

If the above does not hold, then there exist w;, wy, which are both indistinguishable
from w, such that (M, w;) = legal A =p, and (M, ws) |= legal A =" Nec,(t,a).

However, if (M,w;) = ~Necs(i,a), then (M, w;) | ~Necs(i,a) as well. There-
fore, (M, w;) | legal A ~p N = Necy(t,a), which contradicts our assumption (about
K;(—legal V ¢ V Necs(3,a))).
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2. Assume that (M, w) = ~Bf(—~Nec,(7,a)).

This implies that (M, w) = —K;(—legal V ~Necs(i,a)) vV K;—legal.
We need to show that (M, w) |= (K;(—legal vV Necy(i,a)) A = K;—legal) vV K;~legal.

It is suffices to show that if we assume that K;(—legal) does not hold in w, and
we assume that (M, w) E —K;(—legal V = Necy(t,a)), then (M ,w) E K;(—legal v
Necs(i,a)) A = K;—legal.

However, if the latter does not kold, then there exists w’, which is indistinguishable
from w, where legal A =" Nec,(7,a) holds. This implies that K;(—Nec,(7,a)) holds,

which contradicts our assumption.

. Assume that (M, w) = Bf[(¢ = Necs(i,a)) A (mp = —Pos,(3,a))].

From the above assumption we get that

(M,w) = B?[(—¢ A ~Poss(t,a)) V (¢ A Necs(i,a))].

This yields:

(M, w) = = K;(—legal) N K;[-legal V (m¢p A = Necs(z,a)) V (¢ A Necs(3,a))].

We have to show: (M, w) | [Bfe V Bf—¢].

This implies that we have to show: (M,w) E —K;(-legal) A (Ki(legal = ¢) V
Ki(legal = —p)).

It is clear that, given our assumption, (M, w) |= = K;(—legal) holds.

Therefore, in order that the desired result will be obtained we have to show that the

following pair of statements contradict our assumption: (M, w) £ —K;(legal = ¢);

(M, w) £ - K;(legal = —¢). If the above pair of statements hold, then there exists

w', w" such that (M, w') = legal A ~¢ and (M, w") = legal A ¢.

However, if Necy(?,a) holds in w, then we get that legal A =p A Nec,(7,a) holds in
!

w'. This contradicts our assumption. If =Nec,(7,a) holds in w, then we get that
legal A o A =" Necs(i,a) holds in w”, which contradicts our assumption as well.

Combining the above gives us the desired result.

Proof of Proposition 4.4:

1. Assume that (M, w) |= Bf[—~p-reachable(N, g, ~do;(a))].

This implies that (M, w) = —K;(—legal) A K;(legal = —p-reachable(N, g, ~do;(a)).

We have to show that: (M, w) | —K;(—legal) A K;(legal = (—current_goal(j, g)) Vv
(- Ki(—legal) A Necs(i,a)))

Given our assumption, in order that the above will not hold, there should exist w;,
indistinguishable from w, where legal A current_goal(j,g) N ~Nec,s(t,a) holds. On
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the other hand, since we talk about a social system, we have to require (legal A
current_goal(j, g)) = s-reachable(j, g). However, our assumption tells us that
—p-reachable(j, g) unless 7 does a, which gives a contradiction, and yields the desired
result.

Assume that (M, w) |= [legal A =p-reachable( N, social, do;(a))].

If (M, w) |= Pos4(t,a), then the relationships between social reachability and physical
reachability, augmented with our assumption, imply that

(M, w) [ legal A s-reachable( N, —social). This contradicts the assumption that the
system 1is social, and yields the desired result.
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