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26:2 A. ALTMAN AND M. TENNENHOLTZ

1. Introduction

Personalized ranking systems and trust systems are an essential tool for collabora-
tion in a multi-agent environment. In these systems, agents report on their peers’
performance, and these reports are aggregated to form a ranking of the agents. This
ranking may be either global, where a single ranking is generated and reported to all
the agents, or personalized, where each agent is provided with her own ranking of
the agents. Examples of global ranking systems include eBay’s reputation system
[Resnick and Zeckhauser 2001] and Google’s PageRank [Page et al. 1998]. Exam-
ples of personalized ranking systems include personalized versions of PageRank
[Haveliwala et al. 2003; Jeh and Widom 2003] and the MoleTrust ranking system
[Avesani et al. 2005].

Trust systems which provide each agent with a set of agents he or she can
trust can be viewed as personalized ranking systems which supply a two-level
ranking over the agents. Many of these systems can be easily adapted to provide
a full ranking of the agents. Examples of trust systems include OpenPGP(Pretty
Good Privacy)’s trust system [Callas et al. 1998], the ranking system employed by
Advogato [Levien 2002], and the epinions.com web of trust.

A central challenge in the study of ranking systems, is to provide means and
rigorous tools for the evaluation of these systems. In this article, we focus on the
axiomatic approach. In this approach, one considers basic properties, or axioms,
one might require a ranking system to satisfy. Then, existing and new systems
are classified according to the set of axioms they satisfy. Typical results of such
study are axiomatizations of particular ranking systems, or proofs that no ranking
system satisfying a set of axioms exists. For example, in Altman and Tennenholtz
[2005] we provide a set of axioms that are satisfied by the PageRank system and
show that any global ranking system that satisfies these axioms must coincide with
PageRank.

While the axiomatic approach has been extensively applied to the global ranking
systems setting [Tennenholtz 2004; Altman and Tennenholtz 2005, 2008, 2007], no
general attempt has been made to apply such an approach to the context of person-
alized ranking systems. In this article, we introduce an extensive axiomatic study of
the personalized ranking system setting by adapting axioms that have been previ-
ously applied to global ranking systems. We compare several existing personalized
ranking systems in the light of these axioms, and provide novel ranking systems
that satisfy various sets of axioms. Moreover, we prove a full characterization of
the personalized ranking systems satisfying all suggested axioms.

We consider four basic axioms. The first axiom, self confidence, requires that
an agent would be ranked at the top of his own personalized rank. The second
axiom, transitivity, captures the idea that an agent preferred by more highly trusted
agents should be ranked higher than an agent preferred by less trusted agents. The
third axiom, Ranked Independence of Irrelevant Alternatives, requires that under
the perspective of any agent, the relative ranking of two other agents would depend
only on the pairwise comparisons between the rank of the agents that trust them.
The last axiom, strong incentive compatibility, captures the idea that an agent
cannot gain trust in any agent’s perspective by manipulating its reported preference
or by creating fictitious entities.

We fully characterize the set of ranking systems satisfying all four axioms, and
show ranking systems satisfying every three of the four axioms (but not the fourth).
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This article is organized as follows: Section 2 introduces the setting of personal-
ized ranking systems and discusses some known systems. In Section 3, we present
our axioms, and classify the ranking systems shown according to these axioms. In
Section 4, we provide a full characterization of the ranking systems satisfying all
of our axioms, and, in Section 5, we study ranking systems satisfying every three
of the four axioms. Section 6 presents some concluding remarks and suggestions
for future research.

1.1. RELATED WORK. The axiomatic study of personalized ranking systems
stems originally from the theory of social choice with Arrow’s celebrated Impossi-
bility Theorem [Arrow 1963]. Of specific relevance to ranking systems is the study
of voting rules under dichotomous preferences [Bogomolnaia et al. 2005], where
agents only have two levels of preference, and the axiomatization of Approval
Voting [Fishburn 1978] in this setting.

A central approach to the evaluation of general ranking systems is experimen-
tation. This approach was successfully applied to Hubs&Authorities [Kleinberg
1999] and to various other ranking systems [Borodin et al. 2005]. In the trust sys-
tems setting, Massa and Avesani [2005] suggest a similar experimental approach.
A major shortcoming of the experimental approach is the lack of a gold standard in
order to evaluate the experimental results. The axiomatic approach aims to supply
this gold standard.

The axiomatic approach was extensively studied with regard to global ranking
systems. Specifically, research has been conducted on the effects of small changes,
or perturbations, on ranking systems and the design of systems stable to such
changes [Borodin et al. 2005; Ng et al. 2001; Chien et al. 2003; Lee and Borodin
2003; Lempel and Moran 2005]. Axiomatizations were provided for the PageRank
ranking system [Altman and Tennenholtz 2005; Palacios-Huerta and Volij 2004],
and we have provided some impossibility results in Tennenholtz [2004] and Altman
and Tennenholtz [2008].

The issue of incentives in social choice and ranking systems has been also
extensively studied from the Gibbard-Satterthwaite theorem [Gibbard 1973;
Satterthwaite 1975] for voting to combating link spam on the web [Gyöngyi et al.
2004; Wu et al. 2006; Wu and Davison 2005]. Of particular interest are the recent
papers that considered full and almost-full resistance to manipulations by change
of outgoing edges [Altman and Tennenholtz 2007, 2006] or creation of fake entities
[Cheng and Friedman 2005].

Personalized ranking systems have a lot in common with trust [Dash et al. 2004;
Guha et al. 2004] and reputation systems [Resnick et al. 2000; Dellarocas 2003],
which try to establish who a specific should agent trust based on social links,
similarity, or trade history. These may form the basis for recommender systems
which recommend products or services based on similarity [Pennock et al. 2000]
or some measure of trust [Andersen et al. 2008].

2. Personalized Ranking Systems

2.1. THE SETTING. Before describing our results regarding personalized rank-
ing systems, we must first formally define what we mean by the words “personalized
ranking system”.
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26:4 A. ALTMAN AND M. TENNENHOLTZ

Our definition of a personalized ranking system is ordinal in nature. The resulting
personalized ranking only compares vertices but does not allocate numeric values.
This practice is common in social choice, as we assume agents are interested in
choosing who to interact with and do not care about quantitative values. This can
be further motivated by the fact that applications of personalized ranking systems
usually require ranked results, with actual values being immaterial (think of search
engine results).

Definition 2.1.1. Let A be some set. A relation R ⊆ A×A is called an ordering
on A if it is reflexive, transitive, and complete. Let L(A) denote the set of orderings
on A.

Notation 2.1.2. Let � be an ordering, then � is the equality predicate of �,
and ≺ is the strict order induced by �. Formally, a � b if and only if a � b and
b � a; and a ≺ b if and only if a � b but not b � a.

Personalized ranking systems differ from social welfare functions from the social
choice literature in three key aspects:

—The “agents” and “alternatives” coincide—The agents rank themselves. This
is the key difference between ranking systems (personalized or otherwise)
and social welfare functions and voting rules. This feature emphasizes the
fact that agents submit trust votes for each other, and not for some external
alternatives.

—A designated source node s is explicitly specified. This aspect is the basis of the
personalization. There is no single ranking of the agents as with general ranking
systems, but rather a different ranking for each agent.

—The input is binary—Agents only select a preferred set of agents, and do not
specify a full ranking. Binary input is required in order to avoid Arrow-style
impossibility results [Arrow 1963; Gibbard 1973; Satterthwaite 1975] that arise
when agents have more than two levels of ranking. The binary input model
is of great importance, as it applies to natural settings such as social net-
works (you vote for your friends) and web pages (where links are regarded as
votes).

With these three aspects in mind, we can now define the notion of a personalized
ranking system:

Definition 2.1.3. Let GV be the set of all directed graphs G = (V, E) with no
parallel edges, but possibly with self-loops.1 A personalized ranking system(PRS)
F is a functional that for every finite vertex set V and for every source s ∈ V maps
every graph G ∈ GV to an ordering �F

G,s∈ L(V ).

Notation 2.1.4. We will use PG(v) and SG(v) to denote the predecessor set
and successor set of v in G, respectively. The subscript G may be omitted when
understood from context.

Note that our definition does not assume the existence of a directed path from
s to every vertex. However, in some settings, this may be considered a useful

1 Unless otherwise noted, all our results still apply when self loops are not allowed.
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FIG. 1. Example graph for personalized ranking systems.

assumption. Therefore, we shall use these kind of graphs in all examples and
counter-examples, but prove our results for the more general case defined above.

2.2. SOME PERSONALIZED RANKING SYSTEMS. We shall now give examples
of some known PRSs.

A basic ranking system that is at the basis of many trust systems ranks the
agents based on the minimal distance of the agents from the source. The idea
behind this system is you trust the most people who you trust directly, and trust
declines as farther you go. Many social networking websites implicitly use this
type of ranking by having access levels decline with the distance in the friendship
graph.

Notation 2.2.1. Let G = (V, E) be some directed graph and v1, v2 ∈ V be
some vertices, we will use dG(v1, v2) to denote the length of the shortest directed
path in G between v1 and v2. If no such path exists, dG(v1, v2) � ∞.

Definition 2.2.2. The distance PRS FD is defined as follows: Given a graph
G = (V, E) and a source s, v1 �FD

G,s v2 ⇔ dG(s, v1) ≥ dG(s, v2)

Example 2.2.3. Consider the graph in Figure 1. The distance PRS ranks this
graph as follows:

s � a � b � c � d � e � f � g.

We see that the rank increases as the distance to s is shorter.

Another family of PRSs can be derived from the well-known PageRank ranking
system by modifying the so-called teleportation vector in the definition of PageRank
[Jeh and Widom 2003; Haveliwala et al. 2003]. The usual definition of such systems
restricts the restart (or “teleportation”) to a personalized set of websites. As in our
setting the source of personalization s is represented as a node in the system, we
will restrict the restart to only s itself.

The basic idea is that people you should trust are the ones you are most likely to
reach by randomly following trust links starting from yourself, balancing between
agents who are generally more trusted (and thus more likely to be reached after
enough steps) to those which are more trusted by you (and thus reachable soon
after the restart).

We begin our formal definition with a classical stochastic matrix defining a
random walk on the graph:
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26:6 A. ALTMAN AND M. TENNENHOLTZ

Definition 2.2.4. Let G = (V, E) be a directed graph, and assume V =
{v1, v2, . . . , vn}. The PageRank Matrix AG (of dimension n × n) is defined as:

[AG]i, j =
{

1/|SG(vi )| (vi , v j ) ∈ E
0 Otherwise.

The Personalized PageRank procedure ranks pages according to the stationary
probability distribution obtained in the limit of a random walk with a random
teleportation to the source s with probability d known as the damping factor. This
is formally defined as follows.

Definition 2.2.5. Let G = (V, E) be some graph, and assume V =
{s, v2, . . . , vn}. Let r be the unique solution of the system

(1− d) · r · AG + d · (1, 0, . . . , 0) = r.

The Personalized PageRank with damping factor d of a vertex vi ∈ V is defined
as PPRd

G,s(vi ) = ri , that is, the i th element of the solution r.
The Personalized PageRank Ranking System with damping factor d is a PRS

that for the vertex set V and source s ∈ V maps G to�PPRd
G,s , where�PPRd

G,s is defined
as: for all vi , v j ∈ V : vi �PPRd

G,s v j if and only if PPRd
G,s(vi ) ≤ PPRd

G,s(v j ).

Example 2.2.6. Consider again the graph in Figure 1. The ranking generated
by Personalized PageRank depends on the damping factor d being used. Here are
the Personalized PageRank values for d = 0.2 and d = 0.5:

d = s a b c d e f g
0.2 0.2 0.08 0.1013 0.0213 0.3324 0.0171 0.2579 0
0.5 0.5 0.125 0.14583 0.02083 0.13194 0.01041 0.06597 0

Given these values, the Personalized PageRank ranking system ranks the graph
as follows:

d = 0.2 ⇒ d � f � s � b � a � c � e � g
d = 0.5 ⇒ s � b � d � a � f � c � e � g.

Note that with d = 0.2 PPR does not rank s at the top. This seems strange, as you
would expect an agent will trust themselves more than any other agent. Indeed, we
will later require that s be ranked on top as an axiom.

Further note that both runs of PPR conflict with the distance rule on the ranking
of d compared to a—even though a is strictly closer to s than d, PPR ranks d
better.

We now suggest a variant of the Personalized PageRank system, which, as we
will later show, has more positive properties than Personalized PageRank. The
α-Rank system ranks the agents based on their distance from s, breaking ties by
summing the values of the predecessors. A small intrinsic value is added to all
agents in order to discriminate among agents that have no path from s.

The motivation behind α-rank is to add discriminative power to the distance
rule. The tie-breaking scheme used—summation, is based on the intuition from
(personalized) PageRank, and as we will see later, ensures that the system satisfies
strong transitivity.
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Definition 2.2.7. Let G = (V, E) be some graph and assume V = {s, v2, . . . ,
vn}. Let BG be the link matrix for G. That is, [BG]i, j = 1 ⇔ ( j, i) ∈ E . Let α =
1/n2 and let a be the unique solution of the system α·BG ·a+ (1, αn, . . . , αn)T = a.
The α-Rank of a vertex vi ∈ V is defined as rG,s(vi ) = ai . The α-Rank PRS is a
PRS that for the vertex set V and source s ∈ V maps G to �αR

G,s , where �αR
G,s is

defined as: for all vi , v j ∈ V : vi �αR
G,s v j if and only if rG,s(vi ) ≤ rG,s(v j ).

By selecting α = 1/n2, it is ensured that a slight difference in rank of nodes
closer to s will be more significant than a major difference in rank of nodes further
from s, and also ensures the uniqueness of the solution.2

We consider α-Rank a variant of Personalized PageRank because both are based
on weighted summation of predecessors. The major difference between the two is
that in α-Rank there is no scaling based on out-degrees, which we will later see
ensures strong transitivity.

Example 2.2.8. Consider again the graph in Figure 1. The α-ranks are as
follows:

s = 1
a = α + α8

b = α + α2 + α8 + α9

c = α2 + α8 + α9

e = α3 + α8 + α9 + α10

d = 2α2 + α3 + α4 + α8 + 4α9 + 2α10 + α11

1− α2

f = 2α3 + α4 + α5 + α8 + α9 + 2α10 + 2α11 + α12

1− α2

g = α8.

Now, as α is very small, the α-ranking of this graph must be s � b � a � d �
c � f � e � g.

Additional personalized ranking systems are presented in Section 5 as part of
our axiomatic study.

3. Some Axioms

In this section, we will present several desirable properties of Personalized Ranking
Systems, or axioms. These axioms will form the basis of our study of ranking
systems.

3.1. SELF CONFIDENCE. A basic requirement of a PRS is that the source—the
agent under whose perspective we define the ranking system—must be ranked
strictly at the top of the trust ranking, as each agent implicitly trusts herself. We
refer to this property as self-confidence.

2 In the matrix I −αBG , in order for a row to be dependant on other rows some other row must appear
with a factor of at least 1

αn = n > 1, which is impossible.
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26:8 A. ALTMAN AND M. TENNENHOLTZ

Definition 3.1.1. Let F be a PRS. We say that F satisfies self-confidence if
for all graphs G = (V, E), for all sources s ∈ V and for all vertices v ∈ V \ {s}:
v ≺F

G,s s.

3.2. TRANSITIVITY. A basic property of (global) ranking systems called strong
transitivity [Altman and Tennenholtz 2008; Tennenholtz 2004] requires that if an
agent a’s voters are ranked higher than those of agent b, then agent a should be
ranked higher than agent b. We adapt this notion to the personalized setting as
follows:

Definition 3.2.1. Let F be a PRS. We say that F satisfies quasi-transitivity
if for all graphs G = (V, E), for all sources s ∈ V and for all vertices v1, v2 ∈
V \ {s}: Whenever there exists a 1-1 mapping f : P(v1) �→ P(v2) such that for all
v ∈ P(v1):v � f (v), then v1 � v2. F further satisfies strong quasi-transitivity if
when P(v1) �= ∅ and for all v ∈ P(v1): v ≺ f (v), then v1 ≺ v2. F further satisfies
strong transitivity if when either f is not onto or for some v ∈ P(v1): v ≺ f (v),
then v1 ≺ v2.

The definition is based on a matching between the predecessors of v1 and v2.
This matching ensures that we require v2 to be at least as strong as v1 only if the
predecessors of v2 “cover” those of v1 with at most the same strength.

At this point, transitivity breaks into three gradually stronger variants: The
weakest variant, quasi transitivity never induces inequality, and only requires agents
with stronger voters to be at least as strong as those with weaker voters.

The second notion, strong quasi transitivity, adds one special case where inequal-
ity is required, only if all predecessors of one agent map to strictly stronger ones of
the other. Note that by itself, strong quasi-transitivity does not induce inequality,
as the ranking system F=, which ranks all agents equally does in fact satisfy strong
quasi transitivity.

The third and strongest notion, strong transitivity, induces inequality whenever
reasonable: When a voters of one agent are stronger than voters of the other, and
either one is strictly stronger, or there is additional voter. The latter part of the
requirement induces inequality even when this is the only axiom, as it implies, for
example, that agents with no voters must be weaker than agents with voters.

Example 3.2.2. A simple example of transitivity is a chain:

s → a → b

If we assume some ranking system F ranks s � a (e.g., by self-confidence), then
we know that b’s predecessor (a) is weaker than a’s predecessor (s), and thus
quasi transitivity implies a � b. If F satisfies strong quasi-transitivity, then we can
further infer that a � b.

Now consider the graph in Figure 1. Any ranking system satisfying quasi tran-
sitivity must rank b � a, because P(a) ⊆ P(b). Any ranking system satisfying
strong transitivity must rank b � a, because the required mapping from P(a) to
P(b) is not onto. Similarly, we can conclude that e � g and d � c, and by further
applying strong transitivity also a � c � e and f � e.

3.3. RANKED INDEPENDENCE OF IRRELEVANT ALTERNATIVES. A standard as-
sumption in social choice settings is that an alternative’s relative rank should only
depend on (some property of) the agents who have voted for them. Such axioms are
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usually called independence of irrelevant alternatives (IIA) axioms. In our setting,
such IIA axioms mean that an agent’s rank must only depend on a property of its
immediate predecessors.

In the global ranking systems setting [Altman and Tennenholtz 2008], we re-
quired that the relative ranking of two agents must only depend on the pairwise
comparisons of the ranks of their predecessors, and not on their identity or cardinal
value. This ranked IIA, differs from the one suggested by Arrow [1963] in the fact
that we do not consider the identity of the voters, but rather their relative rank.

We now adapt the axiom of ranked IIA to the setting of PRSs, by requiring
this independence for all vertices reachable from the source except the source
itself.

To formally define this condition, one must consider all possibilities of comparing
two nodes in a graph based only on ordinal comparisons of their predecessors. These
possibilities are called comparison profiles:

Definition 3.3.1. A comparison profile is a pair 〈A; B〉 of multisets over N.
Let P denote the set of all such profiles.

A PRS F , a graph G = (V, E), a source s ∈ V , and a pair of vertices v1, v2 ∈ V
are said to satisfy such a comparison profile 〈A; B〉 if there exists a function
f : V �→ N such that:

∀x, y ∈ V : x �F
G,s y ⇔ f (x) ≤ f (y),

A = f (P(v1)), and
B = f (P(v2)),

where f (P(vi )) is the multiset resulting from the application of f to every prede-
cessor of vi .

Notation 3.3.2. In order to ease the proofs, we will alternatively consider a
comparison profile as a pair of vectors 〈a; b〉 that include the elements of the
multisets A and B, respectively, in nondecreasing order.

Comparison profiles reduce an ordinal comparison between the predecessors of
two vertices to a pair of multisets of numbers. Each number represents the rank of
a predecessor of one of the vertices. For example, the profile 〈(1, 1); (2)〉 compares
two equally ranked weak predecessors (1, 1) to one stronger predecessor (2).

We now require that for every such profile the personalized ranking system ranks
the nodes consistently:

Notation 3.3.3. We will use V G
s to denote the set of vertices that have a directed

path from s in a graph G. We will sloppily use Vs when G is understood from
context.

Definition 3.3.4. Let F be a PRS. We say that F satisfies ranked independence
of irrelevant alternatives (ranked IIA) if there exists an ordering � over multisets
over N such that for every graph G = (V, E), for every source s ∈ V and for every
pair of vertices v1, v2 ∈ V G

s \ {s} and for every comparison profile (A, B) that v1

and v2 satisfy, v1 �F
G,s v2 ⇔ A � B.

The ranked IIA axiom intuitively means that the relative ranking of agents must
be consistent across all comparisons with the same rank relations. For example,
there should be one consistent judgement ≺ / � / � between agents voted by
“two weak” (1, 1) compared to those voted by “one strong” (2).
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26:10 A. ALTMAN AND M. TENNENHOLTZ

FIG. 2. An example of ranked IIA.

Example 3.3.5. Consider the graph in Figure 2. Furthermore, assume a ranking
system F that satisfies ranked IIA has ranked the vertices of this graph as follows:

s � f � e � d � c � b � a.

Now look at the comparison between e and f . e has one strong predecessor
(s) while f has an equal strong predecessor (s again) and a weaker predecessor
(a). Therefore, they satisfy the profile 〈(2); (1, 2)〉. Because e ≺ f , we conclude
that (2) ≺ (1, 2). The same profile occurs again with b (predecessor f ) and d
(predecessors e and f ), and indeed b ≺ d. If the ranking would have been d � b,
then we would have known that F does not satisfy ranked IIA.

Now look at b and e. Both have exactly one predecessor, with the former’s
predecessor weaker than the latter’s and thus satisfy the profile 〈(1); (2)〉. As,
b ≺ e, we conclude that (1) ≺ (2). This same profile is satisfied by the pairs (s, e)
and (c, b). However, in both cases, we have the opposite result s � e and c � b.
These results are still consistent with ranked IIA, because it specifically does not
apply to s or to vertices with no directed path from s (such as c).

For F to satisfy ranked IIA, we must show that these and all other comparison
profiles maintain the same results here and in all other graphs.

3.4. INCENTIVE COMPATIBILITY. As with global ranking systems, agents ranked
by personalized ranking systems may wish to manipulate their reported preferences
in order to improve their trustworthiness in the eyes of a specific agent. Therefore,
the incentives of these agents should in many cases be taken into consideration.

The issue of incentives has been extensively studied both in classical social
choice [Gibbard 1973; Satterthwaite 1975; Dutta et al. 2001], and with regard to
global ranking systems [Altman and Tennenholtz 2007, 2006]. In the context of
web search, many approaches have been applied to the detection and avoidance of
malicious spam websites [Gyöngyi et al. 2004; Wu and Davison 2005; Wu et al.
2006]. These systems usually assume spam pages exist but have a limited number
of votes from “good” pages, and try to identify spam with high probability using
seeding with trusted sources. Our approach differs from the web-spam approach
in that we assume any agent (except the source) can turn malicious and change its
outgoing links or create false entities, and the personalized ranking system must
inherently deny that agent any benefit from that action, even though it could not
be outright detected. Specifically, we require that any user turned malicious cannot
improve their position over the one they legitimately have based on their incoming
links.
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We would like our ranking systems to stand against various types of manipula-
tions. It is important to formally define what a manipulation is, and the types of
manipulations we would like to defend against.

Definition 3.4.1. A manipulation is a function M that maps every graph G =
(V, E) ∈ G and every vertex v ∈ V in that graph to a set of graphs M ⊆ G such
that G ∈ M and v ∈ G ′ for all G ′ ∈ M .

We will use manipulations to define for every vertex in any graph, what different
graphs can that agent cause to be presented to the ranking system as a result of a
manipulation.

3.4.1. Utility Structure. We shall now define incentive compatibility, following
Altman and Tennenholtz [2007]. We require that a ranking system will not rank
agents better when they apply a manipulation, but we assume that the agents are
interested only in their own ranking (and not, say, in the ranking of those they
prefer).

We assume that for strict rankings (with no ties), there exists a utility function
u : N �→ R that maps an agent’s rank (i.e., the number of agents ranked above it)
to a utility value for being ranked that way. We assume u is nonincreasing; that is,
every agent weakly prefers to be ranked higher.

This utility function can be extended to the case of ties, by treating these as a
uniform randomization over the matching strict orders. Thus, the utility of an agent
with k agents strictly above it and m agents tied is

u∗(k, m) = Er∈{k,...,k+m−1}[u(r )] = 1

m

k+m−1∑
i=k

u(i),

We can now define the utility of a ranking for an agent as follows:

Definition 3.4.2. The utility uF
G(v) of a vertex v in graph G = (V, E) under

the ranking system F and utility function u is defined as

uF
G(v) = u∗(|{v ′ : v ′ � v}|, |{v ′ : v ′ � v}|)

= 1

|{v ′ : v ′ � v}|
|{v ′:v ′�v}|−1∑
i=|{v ′:v ′�v}|

u(i).

This definition allows us to define a preference relation over rankings for
each agent. Using this preference relation, we can now define the general no-
tion of incentive compatibility as immunity to utility increase as a result of a
manipulation:

Definition 3.4.3. Let F be a ranking system. F is called incentive compatible
under manipulation M and utility function u if for all graphs G = (V, E), for all
sources s ∈ V , for all vertices v ∈ V , and for all manipulations G ′ ∈ M(G, v):
uF

G(v) ≥ uF
G ′(v).

Example 3.4.4. Assume a ranking system F ranks some graph G as follows:

s � a � b � c � d,
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and assume c can manipulate the graph causing a different graph G ′ ∈M(G, c) to
be ranked by the system. In that case F ranks G ′ as follows:

s � a � b � c � d.

Now suppose a utility function u(r ) = −r2. In G ′, the utility of c from F is
uF

G ′(c) = −32 = −9. In G the utility of c from F is uF
G = u(2)+u(3)+u(4)

3 =
− 4+9+16

3 = −9.667. We see that the manipulation by c has increased its utility,
and thus F is not incentive compatible under u.

Now suppose a utility function u′(r ) = −r . In G, the utility of c from F is
u′FG(c) = − 2+3+4

4 = −3, while in G ′ it is also u′FG ′(c) = −3. Thus, we see that, if
this is the only possible manipulation, F is incentive compatible under u′.

One interesting family of utility functions arises if we assume the target agent
considers only the first k results returned by the ranking system for some k. For
example, this might occur if only k results are presented, or can be read in a given
time:

Definition 3.4.5. A utility function u : N �→ R is termed threshold if the exists
some k ∈ N such that

u(i) =
{

1 i < k
0 Otherwise.

We can now define a strong version of incentive compatibility, requiring incentive
compatibility under any (reasonable) utility function.

Definition 3.4.6. Let F be a ranking system. F satisfies strong incentive
compatibility under manipulation M if for any nonincreasing utility function
u : N �→ R, F is incentive compatible under M and u.

It turns out that this strong notion of incentive compatibility is entailed from
the more limited requirement of incentive compatibility under threshold utility
functions.

Furthermore, we show that we can do without utility functions altogether, and
define strong incentive compatibility only in the terms of changes to the resulting
ranking: For strong incentive compatibility to hold, an agent should be able to
improve its position neither by reducing ties, nor by having less agents ranked
above it.

LEMMA 3.4.7. Let F be a PRS, and let M be a manipulation. Then, the
following are equivalent:

(1) F satisfies strong incentive compatibility under M.
(2) For any threshold utility function u: F is incentive compatible under M and

u.
(3) For all graphs G = (V, E), for all sources s ∈ V , for all vertices v ∈ V , and

for all manipulations G ′ ∈M(G, v):∣∣{x ∈ V ′∣∣v ≺F
G ′,s x

}∣∣ ≥ ∣∣{x ∈ V
∣∣v ≺F

G,s x
}∣∣, and∣∣{x ∈ V ′∣∣v �F

G ′,s x
}∣∣ ≥ ∣∣{x ∈ V

∣∣v �F
G,s x

}∣∣.
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PROOF. We shall use the following notations throughout the proof:

n� = ∣∣{x ∈ V
∣∣v �F

G,s x
}∣∣

n′� = ∣∣{x ∈ V ′∣∣v �F
G ′,s x

}∣∣
n� = ∣∣{x ∈ V

∣∣v �F
G,s x

}∣∣
n′� = ∣∣{x ∈ V ′∣∣v �F

G ′,s x
}∣∣

(1)⇒ (2) is trivial.
To prove (2)⇒ (3), assume (2) and assume for contradiction that (3) is false.

Therefore, there is some graph G, source s, vertex v , and manipulation G ′ ∈
M(G, v) such that either n′≺ < n≺ or n′� < n′�. In the former case, the utility
function with threshold n≺ will lead to zero utility in G and positive utility in G ′.
In the latter case the utility function with threshold n� will lead to utility 1 in G ′
and utility strictly below 1 in G.

To prove (3)⇒ (1), assume (3) and assume for contradiction there is some
nonincreasing utility function u, some graph G, source s, vertex v , and manipulation
G ′ ∈M(G, v), such that

1

n� − n≺

n�−1∑
i=n≺

u(i) <
1

n′� − n′≺

n′�−1∑
i=n′≺

u(i).

Now,

0 >
1

n� − n≺

n�−1∑
i=n≺

u(i)− 1

n′� − n′≺

n′�−1∑
i=n′≺

u(i)

=
∑n′�−1

i=n′≺
u(i)+∑n′≺−1

i=n≺ u(i)−∑n′�−1
i=n� u(i)

n� − n≺
− 1

n′� − n′≺

n′�−1∑
i=n′≺

u(i)

0 >
n′� − n′≺ − (n� − n≺)

n′� − n′≺

n′�−1∑
i=n′≺

u(i)+
n′≺−1∑
i=n≺

u(i)−
n′�−1∑
i=n�

u(i)

=
[

n′� − n�
n′� − n′≺

− n′≺ − n≺
n′� − n′≺

] n′�−1∑
i=n′≺

u(i)+
n′≺−1∑
i=n≺

u(i)−
n′�−1∑
i=n�

u(i)

= n′� − n�
n′� − n′≺

n′�−1∑
i=n′≺

u(i)−
n′�−1∑
i=n�

u(i)+
n′≺−1∑
i=n≺

u(i)− n′≺ − n≺
n′� − n′≺

n′�−1∑
i=n′≺

u(i)

≥ n′� − n�
n′� − n′≺

n′�−1∑
i=n′≺

u(i)− (n′� − n�)u(n�)
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+ (n′≺ − n≺)u(n′≺ − 1)− n′≺ − n≺
n′� − n′≺

n′�−1∑
i=n′≺

u(i)

= n′� − n�
n′� − n′≺

n′�−1∑
i=n′≺

[u(i)− u(n�)]+ n′≺ − n≺
n′� − n′≺

n′�−1∑
i=n′≺

[u(n′≺ − 1)− u(i)] ≥ 0,

in contradiction to our assumption.

Even though the notion of strong incentive compatibility stems from utility
functions, it is easier to use case (3) of Lemma 3.4.7, and we shall do so throughout
the article.

3.4.2. Manipulations. In Altman and Tennenholtz [2007, 2006], we considered
manipulation by modification of an agent’s outgoing links. Such outgoing link
manipulation can be defined as:

Mout (V, E, v) = {(V, E ′)|∀u ∈ V \ {v} : ∀u′ ∈ V : (u, u′) ∈ E ⇔ (u, u′) ∈ E ′}.

Example 3.4.8. Consider the graph in Figure 3(a). If agent a performs an
outgoing link manipulation, she can change the graph to include any subset of the
dotted links in Figure 3(b). Note that a cannot remove the incoming link from s or
add new incoming links from other agents. Furthermore, she cannot add or remove
agents in the graph.

The outgoing link manipulation Mout is actually a special kind of manipulation
in the sense that the agent can perform the manipulation in both directions.

Definition 3.4.9. A manipulation M is called reversible if for all G =
(V, E) ∈ G, for all v ∈ V , and for all G ′ ∈M(G, v): G ∈M(G ′, v).

Reversible manipulations are important due to the following simple fact:

FACT 3.4.10. Let M be a reversible manipulation and let F be a PRS . F
satisfies strong incentive compatibility under M if and only if for all graphs
G = (V, E), for all sources s ∈ V , for all vertices v ∈ V , and for all manipulations
G ′ ∈M(G, v):∣∣{x ∈ V ′∣∣v ≺F

G ′,s x
}∣∣ = ∣∣{x ∈ V

∣∣v ≺F
G,s x

}∣∣, and∣∣{x ∈ V ′∣∣v �F
G ′,s x

}∣∣ = ∣∣{x ∈ V
∣∣v �F

G,s x
}∣∣.

Therefore, in a PRS that is incentive compatible under a reversible manipulation
an agent cannot change its rank at all (for better or for worse) by performing a
manipulation.

Another type of manipulation, considered by Cheng and Friedman [2005] is
concerned with the generation of fraudulent identities in order to manipulate one’s
rank. Their setting considered weighted edges, as opposed to our setting where
the edges are binary. However, we can adapt their sybil form of manipulation by
simply removing these weights.

A sybil manipulation, or sybil strategy is a manipulation in which an agent
controlling one vertex v in the graph can create any number of fraudulent identities
(or sybils) and freely manipulate the links among these sybils, while maintaining
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FIG. 3. Examples of manipulations.

the same set of incoming and outgoing links (possibly duplicated) among the sybil
group as a whole.

Thus, we can define the sybil manipulation as:

Msybil(V, E, v) = {(V ′, E ′)|V ′ = V � A
∧∀u, u′ ∈ V \ {v} :
∧(u, u′) ∈ E ⇔ (u, u′) ∈ E ′

∧(u, v) ∈ E ⇔ ∃a ∈ A ∪ {v} : (u, a) ∈ E ′

(v, u) ∈ E ⇔ ∃a ∈ A ∪ {v} : (a, u) ∈ E ′.
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Example 3.4.11. Consider again the graph in Figure 3(a), and now consider a
sybil manipulation by agent a. Now, a can create any number of new vertices and
edges between them, with only the limitation of keeping the same incoming and
outgoing edges, which may be duplicated.

To illustrate how strong this manipulation is, consider the manipulation in
Figure 3(c). Here, a has created a complete replica of the original graph with
herself in place of agent d. A ranking system that is not sensitive to node names
must rank a and d the same in the manipulated graph. That means that a ranking
system that is strongly incentive compatible under Msybil must assign d in the
second graph a rank no better than a in the original graph.

We can also consider the combined manipulation of the two, which is not the
same as the simple union of these manipulations:

Mboth(V, E, v) = {(V ′, E ′)|V ′ = V � A
∧∀u, u′ ∈ V \ {v} : (u, u′) ∈ E ⇔ (u, u′) ∈ E ′

∧(u, v) ∈ E ⇔ ∃a ∈ A ∪ {v} : (u, a) ∈ E ′.

It turns out that strong incentive compatibility under both outgoing edge and sybil
manipulations is equivalent to strong incentive compatibility under the combined
manipulation:

FACT 3.4.12. Let F be a PRS. F satisfies strong incentive compatibility under
Mout and under Msybil if and only if it satisfies strong incentive compatibility
under Mboth.

PROOF. The “if” direction is trivial. For the “only if” direction, let G = (V, E)
be a graph and v ∈ V . Consider a manipulation (V ′, E ′) ∈Mboth(V, E, v). Let

U = {x |∃u ∈ V ′ \ V ∪ {v} : (u, x) ∈ E ′}
E ′′ = E \ {(v, x)|x ∈ V } ∪ {(v, x)|x ∈ U }.

Now (V, E ′′) ∈ Mout(V, E, v) and (V ′, E ′) ∈ Msybil(V, E ′′, v), and due to strong
incentive compatibility under these manipulations, F also satisfies strong incentive
compatibility under manipulation (V ′, E ′) and indeed under any manipulation in
Mboth.

It turns out that for personalized ranking systems, strong incentive compatibility
under these two different manipulations almost always goes hand in hand, and for
the ranking systems, we present in this article we will see that they either satisfy
strong incentive compatibility under Mboth or do not satisfy incentive compatibility
under neither Mout nor Msybil.

3.5. SATISFICATION. We will now demonstrate the aforementioned axioms by
showing which axioms are satisfied by the PRSs mentioned in Section 2.2.

PROPOSITION 3.5.1. The distance PRS FD satisfies self confidence, ranked IIA,
transitivity, and strong incentive compatibility under Mboth, but does not satisfy
strong transitivity.

PROOF. Self-confidence is satisfied by definition of FD. FD satisfies ranked
IIA, because it ranks every comparison profile in the connected section consistently
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FIG. 4. Graphs proving PRS do not satisfy axioms.

according to the following rule:

(a1, a2, . . . , an) � (b1, b2, . . . , bm) ⇔ an ≤ bm .

That is, any two vertices are compared according to their strongest predecessor.
FD satisfies strong quasi transitivity, because the ranking of the profiles above is
consistent with strong quasi transitivity. The unconnected vertices are all equal
to each other and weaker than the connected vertices which is also true for their
predecessors, and thus strong quasi transitivity is satisfied.

To prove that FD satisfies strong incentive compatibility, note the fact that an
agent x cannot modify the shortest path from s to x by changing its outgoing links
or adding sybils since any such shortest path necessarily does not include x or its
sybils (except as target). Moreover, x or its sybils cannot change the shortest path
to any agent y with d(s, y) ≤ d(s, x), because x and its sybils are necessarily not
on the shortest path from s to y. Therefore, the amount of agents ranked above
x and its sybils and the amount of agents ranked equal to x or its sybils cannot
decrease due to x’s manipulations.

To prove FD does not satisfy strong transitivity, consider the graph in Figure 4(a).
In this graph, x and y are ranked the same, even though P(x) � P(y), in contra-
diction to strong transitivity.
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Even though the distance PRS satisfies all our axioms for personalized ranking
systems, it suffers from a major problem: On a typical graph (say, for a social
network) the second and third levels for any particular source will include a very
large number of individuals. Therefore, the generated ranking will not be very
useful for the agent.

That said, our result above hints that the distance rule is a good first step towards
the design of personalized ranking systems. In particular, we will later see examples
of ranking systems that refine the distance rule to generate a ranking with more
distinctive power than plain distance.

PROPOSITION 3.5.2. The Personalized PageRank ranking systems satisfy self
confidence if and only if the damping factor is set to more than 1

2 .3 Moreover,
Personalized PageRank does not satisfy weak transitivity, ranked IIA or strong
incentive compatibility under Mout or Msybil for any damping factor.

PROOF. To prove the that PPR does not satisfy self-confidence for d ≤ 1
2 ,

consider the graph in Figure 4(b). For any damping factor d, the PPR will be
PPR(s) = d and PPR(x) = 1 − d. If d ≤ 1

2 , then PPR(s) ≤ PPR(x) and thus
s �PPRd x , in contradiction to the self confidence axiom.

PPR satisfies self-confidence for d > 1
2 because then PPR(s) ≥ d > 1

2 , while
for all v ∈ V \ {s}, PPR(v) ≤ 1− d < 1

2 .
To prove that PPR does not satisfy strong quasi transitivity and ranked IIA,

consider the graph in Figure 4(c). The PPR of this graph for any damping factor d is
as follows: PPR(s) = d; PPR(a) = d(1−d)

2 ; PPR(b) = d(1−d)2

4 ; PPR(c) = d(1−d)2

2 .
Therefore, the ranking of this graph is: b ≺ c ≺ a ≺ s. Quasi-transitivity is
violated because b ≺ c even though P(b) = P(c) = a. This also violates ranked
IIA because the ranking profile 〈(1); (1)〉 must be ranked as equal due to trivial
comparisons such as a and a.

Strong incentive compatibility under Mout is not satisfied, because in the graph
in Figure 4(c), if any of the b agents b′ would have voted for themselves, they
would have been ranked b ≺ b′ ≺ c ≺ a ≺ s, which is a strict increase in b′ rank.

To show that strong incentive compatibility under Msybil is not satisfied, con-
sider the graph in Figure 4(d). Note that a � b ≺ s in this graph. Consider the
manipulation by a where a sybil a′ is added along with the edges {(s, a′), (a′, a)}.
In this case, the PageRank value of b would be 1

3 (1−d)d while the PageRank value
of a will be (1−d)+1

3 (1− d)d. Therefore, b ≺ a ≺ s in the manipulated graph, and
thus strong incentive compatibility is not satisfied.

We have shown that Personalized PageRank is not sybil-proof. In fact, this result
is true even if we ignore the effect of the sybils dividing the “strength” of the
preceding node. Even in the weighted case, as considered by Cheng and Friedman
[2005], replacing a node with a clique may decrease the weight of a single outgoing
link and thus increase the relative rank of a desired node.

An example of a PRS that satisfies Strong transitivity is α-Rank:
PROPOSITION 3.5.3. The α-Rank system satisfies self confidence and strong

transitivity, but does not satisfy ranked IIA or strong incentive compatibility under
Mout or Msybil.

3 If we do not allow self-loops, this bound becomes (
√

5− 1)/2 ≈ 0.618.
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PROOF. To show α-Rank satisfies self confidence, note that by definition
rG,s(s) ≥ 1. Assume for contradiction that maxv �=s rG,s(v) ≥ 1. Then,

rG,s(s) ≤ 1+ α
∑
v∈V

rG,s(v)

≤ 1+ α
[
(n − 1) max

v �=s
rG,s(v)+ rG,s(s)

]
rG,s(s) ≤ 1

1− α
+ α

1− α
(n − 1) max

v �=s
rG,s(v)

≤ 4

3
+max

v �=s
rG,s(v)

max
v �=s

rG,s(v) ≤ αn + α
∑
v∈V

rG,s(v)

≤ αn + α
[
n ·max

v �=s
rG,s(v)+ 4

3

]
[
1− n

n2

]
max
v �=s

rG,s(v) ≤ 4

3n2
+ 1

n2n
<

2

n2

n2 − n < 2
2 ≤ n(n − 1) < 2.

To prove α-Rank satisfies strong transitivity, consider two vertices a, b ∈ V \{s}
and a function f : P(a) �→ P(b) such that v � f (v) for all v ∈ P(a). Then,

rG,s(a)/α − αn−1 =
∑

v∈P(a)

rG,s(v) ≤
∑

v∈ f (P(a))

rG,s(v)

≤
∑

v∈P(b)

rG,s(v) = rG,s(b)/α − αn−1, (1)

which implies a � b. If, for some v ∈ P(a): v ≺ f (v), or if f is not onto, then
the first or the second inequality, respectively, in (1) above is strict, which implies
a ≺ b, as required.

To prove α-Rank does not satisfy strong incentive compatibility under Mout,
consider the graph in Figure 4(e). In this graph, α-Rank ranks d ≺ b. However, if
d removes the link to b, they will be ranked equally and thus reducing the number
of agents stronger than d. To prove α-Rank does not satisfy strong incentive
compatibility under Msybil, consider again the graph in Figure 4(e). Agent c is
ranked below agent b in this graph. However, she can duplicate herself and add
edges (c, c′) and (c′, c) to be ranked above b thus decreasing the number of agents
ranked better than herself.

To prove α-Rank does not satisfy ranked IIA, consider the graph in Figure 4(f).
It is easy to calculate the following α-Rank values:

r (s) = 1
r (i) = r (h) = α + α10

r (d) = r (e) = α2 + α10 + α11

r ( f ) = 2α2 + α3 + α10 + 3α11 + α12
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r (g) = α2 + α3 + α10 + 2α11 + α12

r (a) = 2α3 + α10 + 2α11 + 2α12

r (b) = 2α3 + α4 + α10 + α11 + 3α12 + α13

r (c) = α3 + α4 + α10 + α11 + 2α12 + α13.

Therefore, this graph is ranked c ≺ a ≺ b ≺ d � e ≺ g ≺ f ≺ i � h ≺ s. Note
that (a, b) and (a, c) both satisfy the profile 〈(1, 1); (2)〉, however a ≺ b and c ≺ a
in contradiction to ranked IIA.

The α-rank system, being additive in nature, satisfies strong transitivity. The
small values assigned to all vertices are to ensure a positive value for each vertex,
and thus conform to the strong requirement of transitivity. The small value used
for α is in order to ensure self-confidence, so that every level will be ranked strictly
weaker than the preceding one.

4. A Characterization Theorem

We have previously seen that the distance ranking system satisfies all the aforemen-
tioned axioms, except strong transitivity, which is not compatible with ranked IIA.4

However, we have seen that the distance rule does not have much discriminatory
power. Therefore, we would like to consider a refinement of the distance rule that
would let us discriminate between the vertices that would have otherwise been all
ranked equally.

In this section, we suggest to refine the distance rule based on the strength and
number of strong votes from the previous level. We show that the ranking systems
that satisfy these axioms are exactly the ones on the spectrum between the distance
rule and this count-based refinement.

We call the systems on this spectrum strong count systems. Strong count systems
rank agents first according to distance from s, then by their strongest predecessors,
breaking ties according to a function of the number of equal strongest predecessors
the agents have.

The strong count systems on this spectrum differ by a tie-breaking function r .
Instead of comparing breaking ties based on the actual predecessor count x , r (x)
is used, which may artificially create ties. In the most extreme cases, we get the
distance rule for r ≡ 1, and the most refined strong count system (as described
above) for the identity function r (x) = x . For a detailed example, see Example 4.2.

The strong count system is formally defined as follows:

Definition 4.1. Let r : N �→ N be a monotone nondecreasing function such
that r (i) ≤ i for all i ∈ N∪{0}. The strong count system SCr is defined as follows:

Consider the layers of the graph G based on distance from s:

Li = {x |d(s, x) = i} ∀i ∈ N ∪ {0}
L∞ = V \ Vs .

4This has been proven in the global ranking systems setting [Altman and Tennenholtz 2008], and that
result copies to the personalized setting.
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FIG. 5. Example of the Strong Count personalized ranking systems.

Note that all layers are disjoint and are a partition of the vertices:

V =
⊎

i∈N∪{0,∞}
Li .

We shall now define recursively define the order �i over each layer Li : Let Mi (x)
be a maximum predecessor of x in layer i and mi (x) be the number of such
predecessors:

Mi (x) = max�i

(P(x) ∩ Li ) (2)

mi (x) = |{v : v ∈ P(x) ∩ Li ∧ v �i Mi (x)}|.
The ordering in layer i is first on the strongest predecessor from layer i − 1 and
second on the number of such predecessors:

x �i y ⇔ [Mi−1(x) ≺i−1 Mi−1(y)]
∨ [Mi−1(x) �i−1 Mi−1(y) ∧ r (mi−1(x)) ≤ r (mi−1(y))]

In L∞ all agents are considered equal:

∀x, y ∈ L∞ : x �∞ y

Now,

a �SCr b ⇔ [d(s, a) > d(s, b)]
∨[

d(s, a) = d(s, b) ∧ a �d(s,a) b
]
.

Example 4.2. Consider for example the graph in Figure 5. All strong count
systems ignore the dotted edges, because these edges are not from a level closer to
s, and thus are never the strongest predecessors.

The distance rule, or strong count with r ≡ 1, ranks the graph purely based on
distance from s:

s � a � b � c � d � e � f � g � h � i.
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If we use strong count with the identity function r (x) = x , then a distinction is
made in the second level with c having two strong predecessors. This distinction is
then carried over to the next level with f and g being stronger than h and i . Between
h and i , h is ranked higher due to the the two strong links from d and e, while f and
g are equally ranked because they both have one strong predecessor—c. Therefore,
the resulting ranking is

s � a � b � c � d � e � f � g � h � i.

To demonstrate the effect of r , consider now a case where r (1) = r (2) = 1 while
r (3) = 2. In this case, c and d are ranked equally because r has no distinction
between two and one strong predecessors. For the same reason f , h, and i are
ranked the same. However, as g has three strong predecessors, it is still ranked
higher than f , resulting in the ranking

s � a � b � c � d � e � g � f � h � i.

Now we can state our main theorem:

THEOREM 4.3. Let F be a PRS. The following three statements are equivalent:

(1) F is a strong count system for some function r .
(2) F satisfies self confidence, strong quasi transitivity, ranked IIA and strong

incentive compatibility under Mout.
(3) F satisfies self confidence, strong quasi transitivity, ranked IIA and strong

incentive compatibility under Mboth.

We begin our proof by showing that the strong count systems do in fact satisfy
all these axioms.

PROOF (1 ⇒ 3). Let r be a monotone nondecreasing function such that r (x) ≤
x . SCr satisfies self-confidence by definition.

To show that SCr satisfies ranked IIA and strong quasi-transitivity on elements
of Vs , we will show that it ranks any profile p = 〈(a1, . . . , an); (b1, . . . , bm)〉 as
follows: Let ca = max{i ∈ N|an−i = an−i+1 = · · · = an} and cb = max{i ∈
N|bm−i = bm−i+1 = · · · = bm}.

a � b ⇔ (an < bm)
∨[(an = bm) ∧ (r (ca) ≤ r (cb))]

This almost follows from the definition of SCr ; however, it remains to show that
for all x ∈ Li : P(x) ∩ Li−1 �= ∅ and for all z ∈ P(x) ∩ Li−1, y ∈ P(x) \ Li−1:
y ≺ z, thus showing that the limited maximum computed in (2) is equal to the
maximum over all P(x). This statement is true due to the strict ordering between
layers and the fact that P(x) includes only elements of layer i − 1 or and layers
farther away from s.

Strong quasi-transitivity involving elements in V \ Vs and elements either in
V \ {s} is satisfied because for all x ∈ V \ Vs and y ∈ V \ {s} we have x � y (by
definition) and if x ≺ y then y ∈ Vs \ {s} and thus there is some y′ ∈ P(y) such
that for all x ′ ∈ P(x): x ′ � y′.

With regard to the strong incentive compatibility under Mboth, due to fact the
ranking is a refinement of the distance rule, all sybils of v will be strictly weaker
than the vertices with smaller distance from s. Furthermore, any other vertices
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FIG. 6. Example of graph from proof of Lemma 4.5.

that were stronger than v in the original graph will be stronger than any of v’s
sybils, due to the fact that the relative rank of two vertices is determined only
based on incoming links from vertices closer to s, and more incoming edges
cannot decrease an agent’s rank. By the same logic, vertices which were equal to
v in the original graph, will either be stronger or equal to v in the manipulated
graph.

In order to prove the hard direction of Theorem 4.3 (2 ⇒ 1), we will first show
that a strong notion of transitivity is implied by the axioms:

Definition 4.4. Let F be a PRS. We say that F satisfies weak maximum tran-
sitivity if for all graphs G = (V, E), for all sources s ∈ V and for all vertices
v1, v2 ∈ Vs : Let m1, m2 be the maximally ranked vertices in P(v1), P(v2) respec-
tively. If m1 ≺ m2, then v1 ≺ v2.

LEMMA 4.5. Let F be a PRS that satisfies self-confidence, strong quasi-
transitivity, ranked IIA and strong incentive compatibility. Then, F satisfies weak
maximum transitivity.

PROOF. In order to show that F satisfies weak maximum transitivity, we will
show that for every comparison profile the ranking must be consistent with weak
maximum transitivity. Let p = 〈(a1, a2, . . . , ak); (b1, b2, . . . , bl)〉 be a comparison
profile where ak �= bl . Assume without loss of generality that bl < ak and assume
for contradiction that (a1, a2, . . . , ak) � (b1, b2, . . . , bl). Consider the graph G =
(V, E) defined as follows:

V = {s, a, b} ∪ {
u j

i |i ∈ {1, . . . , max(k, l)
}
; j ∈ {0, . . . , ak}}

E = {(
u j

i , u j−1
i

)|i ∈ {1, . . . , max(k, l)
}
; j ∈ {1, . . . , ak}}

∪ {(
s, ubl

i

)∣∣i ∈ {1, . . . , max(k, l)}}
∪ {(

u j
i , a

)∣∣ai = j
} ∪ {

(u j
i , b)|bi = j

}
.

Figure 6 contains such a graph for the profile 〈(1, 4); (2, 2, 3)〉.
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Note that by strong quasi-transitivity and self confidence, for all i, i ′, j, j ′:
u j

i � u j ′
i ′ iff j ≤ j ′. Therefore, we will use u j to denote any u j

i . By the construction
of G, a and b satisfy p. Thus, from our assumption, a � b.

By strong quasi-transitivity, a � ubl , and thus from our assumption also b � ubl .
Now consider the point of view of agent ubl

l . She can perform a manipulation by not
voting for b. This manipulation must not change her relative rank, as it is in Mout.
As the relative ranks of the u j

i agents and s are unaffected by this manipulation, it
cannot affect the ranks of a and b relative to ubl

l , and thus after the edge (ubl
l , b) is

removed, we still have b � ubl
l . We can repeat this process for all i = bl, . . . , 2, with

the result that in the graph G ′ for the profile 〈(a1, a2, . . . , ak); (b1)〉, b � ub2 � ub1 .
However, by strong quasi transitivity, b �G ′ ub1−1 ≺G ′ ub1 �G ′ b, which is a
contradiction.

We can now prove the hard direction of Theorem 4.3.

PROOF OF THEOREM 4.3 (2 ⇒ 1). Given Lemma 4.5, in order to deter-
mine the ranking of vertices in Vs it remains to look at profiles
〈(a1, a2, . . . , ak); (b1, b2, . . . , bl)〉 where ak = bl . Denote M = ak = bl . Let p
be such a profile. Denote xa = |{n|an = M}| and similarly xb = |{n|bn = M}|.
These values denote the number of strongest predecessors a and b have in profile
p.

We will now prove by induction on k + l − xa − xb that F ranks p the same as
it ranks 〈(1, . . . , 1︸ ︷︷ ︸

xa times

); (1, . . . , 1︸ ︷︷ ︸
xb times

)〉. If k + l − xa − xb = 0, then a1 = ak = b1 = bl ,

and thus the requirement is trivially satisfied. Otherwise, we assume correctness
for k + l − xa − xb − 1. Further assume without loss of generality that a1 �= ak .
Denote r = ak−xa and ya = |{n|an = r}|.

We shall now consider two cases:

—If b1 = bl or ak−xa �= bl−xb . If b1 �= bl , then further assume without loss
of generality that ak−xa > bl−xb . Consider the graph G = (V, E) defined as
follows:

V = {s, a} ∪ {b1, . . . , bya }
∪ {

u j
i |i ∈ {1, . . . , max(k, l)}; j ∈ {0, . . . , M}}

E = {(
u j

i , u j−1
i

)|i ∈ {1, . . . , max(k, l)}; j ∈ {1, . . . , M}}
∪ {(

s, uM
i

)|i ∈ {1, . . . , max(k, l)}} ∪ {
(u j

i , a)|ai = j �= r
}

∪{(
u j

i , bn
)|bi = j, n = 1, . . . , ya} ∪ {(bn, a)|n = 1, . . . , ya}.

Figure 7 contains such a graph for the profile 〈(1, 3, 3, 4); (1, 2, 4, 4)〉. Note that
by strong quasi-transitivity and self-confidence, for all i, i ′, j, j ′: u j

i � u j ′
i ′ iff

j ≤ j ′. Therefore, we will use u j to denote any u j
i . Similarly, all bn are equal to

each other, and by weak maximum transitivity (Lemma 4.5), uM−1 � a, b ≺ uM

(we will similarly use b to denote any bn). Therefore, a and b satisfy p. Now
consider the following manipulation by b1: Removing the outgoing edge to a.
This manipulation is in Mout and thus should not change the relative rank of b1.
Note that b1’s predecessors remain the same and equal to the ones of b2, . . . , bya ,
and all bn remain equal. We must now show that for every allowable relative
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FIG. 7. Example graph from the proof of Theorem 4.3 case 1.

ranking of uM−1, a, and b the manipulation cannot change a and b’s relative
rank. We will do this by considering all cases:

Ordering # Vertices equal to b # Vertices stronger than b

uM−1 � b ≺ a ya +max(k, l) (M − r ) ·max(k, l)+ 2
uM−1 ≺ b ≺ a ya (M − r ) ·max(k, l)+ 2
uM−1 � a � b ya +max(k, l)+ 1 (M − r ) ·max(k, l)+ 1
uM−1 ≺ a � b ya + 1 (M − r ) ·max(k, l)+ 1
uM−1 � a ≺ b ya (M − r ) ·max(k, l)+ 1
uM−1 ≺ a ≺ b ya (M − r ) ·max(k, l)+ 1

We see that any change in the relation between a and b will surely change b’s
rank in a way that is not strategy-proof.

We have shown that profile p must be ranked the same as the profile

〈(a1, a2, . . . , ak−xa−1, ak−xa+1, . . . , ak); (b1, b2, . . . , bl)〉,

which by the assumption of induction gives us the desired result.
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FIG. 8. Example graph from the proof of Theorem 4.3 case 2.

—Otherwise, ak−xa = bl−xb . Denote yb = |{n|bn = r}| and assume without loss of
generality that yb ≥ ya . Consider the graph G = (V, E) defined as follows:

V = {s, a} ∪ {b0, . . . , byb}
∪ {

u j
i |i ∈ {1, . . . , max(k, l)}; j ∈ {0, . . . , M}}

E = {(
u j

i , u j−1
i

)|i ∈ {1, . . . , max(k, l)}; j ∈ {1, . . . , M}}
∪{(

s, uM
i

)|i ∈ {1, . . . , max(k, l)}} ∪ {
(u j

i , a)|ai = j �= r
}

∪{(
u j

i , bn
)|bi = j �= r, n = 0, . . . , y

}
∪{(

bn, a
)|n = 1, . . . , ya} ∪ {(bn, bm)|n �= m ∈ {0, . . . , yb}}.

Figure 8 contains such a graph for the profile 〈(1, 1, 2, 2); (1, 1, 1, 2)〉. As before,
for all i, i ′, j, j ′: u j

i � u j ′
i ′ iff , j ≤ j ′ and we will use u j to denote any u j

i . All
bn are equal to each other because if without loss of generality b1 ≺ b2 then b1’s
predecessors will be stronger than b2’s predecessors and thus by strong quasi
transitivity b2 � b1. Again, by weak maximum transitivity, uM−1 � a, b ≺
uM and we will use b to denote any bn . Therefore, a and b satisfy p. We
can again consider a manipulation by b1 removing an edge to a, again all bn

remain equal and as before the manipulation cannot change a and b’s relative
rank, and when again applying the assumption of induction we get the desired
result.

By strong quasi-transitivity, profiles where all predecessors are equal are ranked
(1) � (1, 1) � · · · . When considering the result above, we conclude any two
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vertices should be weakly ranked according to the number of strongest predecessors
they have, and by ranked IIA the tie-breaking rule must be universal.

It remains to show that vertices in V \ Vs will be ranked equally and strictly
weaker than those in Vs . Let m ∈ Vs be a minimally ranked vertex in Vs . Consider
a manipulation by m adding edges to all vertices in V \ Vs . By the above proof, all
vertices in V \ Vs will be equally ranked weaker than m. As m does not worsen its
position by performing this manipulation and the internal ranking in Vs does not
change we conclude that in any graph all vertices in V \ Vs must be ranked strictly
weaker than those in Vs .

We can show the vertices in V \ Vs are ranked equally by induction on the
number of edges between them. If there are no such edges, then by strong quasi-
transitivity, the requirement is satisfied. Otherwise, consider an edge (v1, v2) such
that v1, v2 ∈ V \ Vs . A manipulation by v1 adding this edge must retain its position
and thus all agents in V \ Vs must be ranked equally.

We have shown that all vertices must be ranked according to strong count and
thus the system must be a strong count system.

5. Relaxing the Axioms

We shall now prove the conditions in Lemma 4.5 (and thus also in Theorem 4.3)
are all necessary by showing PRSs that satisfy each three of the four conditions,
but do not satisfy weak maximum transitivity. Some of these systems are quite
artificial, while others are interesting and useful.

5.1. ARTIFICIAL RANKING SYSTEMS.

PROPOSITION 5.1.1. There exists a PRS that satisfies strong quasi-transitivity,
ranked IIA and strong incentive compatibility, but not self-confidence nor weak
maximum transitivity.

PROOF. Let F−
D be the PRS that ranks strictly the opposite of the distance

system FD. That is, v1 �F−
D

G,s v2 ⇔ v2 �FD
G,s v1. The proof F−

D satisfies strong
quasi transitivity, ranked IIA and strong incentive compatibility follows the proof
of Proposition 3.5.1, with the following rule for ranking comparison profiles:

(a1, a2, . . . , an) � (b1, b2, . . . , bm) ⇔ a1 ≤ b1.

F−
D does not satisfy self-confidence, because, by definition s is weaker than all

other agents, and does not satisfy weak maximum transitivity because in graph
from Figure 4(a), F−

D ranks x and y equally even though the strongest predecessor
of y, which is x , is stronger than the strongest predecessor of x , which is s.

This PRS is highly unintuitive, as the most trusted agents are the ones furthest
from the source, which is by itself the least trusted.

Relaxing strong quasi-transitivity leads to a PRS that is almost trivial:

PROPOSITION 5.1.2. There exists a PRS that satisfies self-confidence, ranked
IIA and strong incentive compatibility, but not strong quasi-transitivity nor weak
maximum transitivity.

PROOF. Let F be the PRS that ranks for every G = (V, E), for every source
s ∈ V , and for every v1, v2 ∈ V \ {s}: v1 � v2 ≺ s. That is, F ranks s on the
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top, and all of the other agents equally. F trivially satisfies self confidence, ranked
IIA and strong incentive compatibility, as s is indeed stronger than all other agents
and every comparison profile is ranked equally. F does not satisfy strong quasi
transitivity or weak maximum transitivity, because in a chain of vertices starting
from s all except s will be ranked equally.

5.2. RELAXING RANKED IIA. When ranked IIA is relaxed, we find a new
ranking system that ranks in accordance with the distance from s, breaking ties
according to the number of shortest paths from s:

Notation 5.2.1. Let G = (V, E) be some directed graph and v1, v2 ∈ V be
some vertices, we will use nG(v1, v2) to denote the number of directed paths of
minimum length between v1 and v2 in G. We will sloppily use the notations d(v)
and n(v) to denote dG(s, v) and nG(s, v), respectively.

Definition 5.2.2. The Path Count PRS FP is defined as follows: Given a graph
G = (V, E) and a source s, for all v1, v2 ∈ V \ {s}:

v1 �FP
G,s v2 ⇔ dG(s, v1) > dG(s, v2)

∨ (dG(s, v1) = dG(s, v2)
∧ nG(s, v1) ≤ nG(s, v2))

The Path count PRS ranks first based on distance and then based on the number of
directed paths of shortest length.

Example 5.2.3. Consider again the graph in Figure 5. The vertices in the first
level a and b have only one minimal length path leading to them, and so do d and
e. c, however, has two, and thus s � a � b � c � d � e. In the next level f has
the same two paths c has, but extended. g has those two paths and paths thru d and
e, for a total of four paths. h has the two path thru d and e for a total of two, while
i only has the one path thru e. Thus, the ranking is:

s � a � b � c � d � e � g � f � h � i.

We shall now show that path count is indeed a result of relaxing ranked IIA:

PROPOSITION 5.2.4. The path count PRS FP satisfies self confidence, strong
quasi transitivity and strong incentive compatibility under Mboth, but not ranked
IIA nor weak maximum transitivity.

PROOF. Self-confidence is trivial as d(s) = 0 < d(v) for all v �= s.
To prove FP satisfies quasi-transitivity consider a graph G = (V, E), a source

s ∈ V and two vertices v1, v2 ∈ V \ {s}. Assume for contradiction that v2 ≺ v1
and there exists a 1-1 function f : P(v1) �→ P(v2) such that v � f (v) for all
v ∈ P(v1). By the definition of FP : d(v1) ≤ d(v2), but

d(v1) = min
v∈P(v1)

d(v)+ 1 ≥ min
v∈ f (P(v1))

d(v)+ 1 ≥ min
v∈P(v2)

d(v)+ 1 = d(v2),
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FIG. 9. Proof FP does not satisfy ranked IIA nor weak maximum transitivity.

and thus d(v1) = d(v2). Now,

n(v1) =
∑

v∈P(v1)∧d(v)+1=d(v1)

n(v)

≤
∑

v∈ f (P(v1))∧d( f −1(v))+1=d(v1)

n(v)

≤
∑

v∈P(v2)∧d(v)+1=d(v2)

n(v) = n(v2).

Therefore, v1 � v2 in contradiction to our assumption.
For strong quasi-transitivity, assume now that v2 � v1, P(v1) �= ∅, and there

exists a 1-1 function f : P(v1) �→ P(v2) such that v ≺ f (v) for all v ∈ P(v1). As
above, we find that d(v1) = d(v2). Now,

n(v1) =
∑

v∈P(v1)∧d(v)+1=d(v1)

n(v)

<
∑

v∈ f (P(v1))∧d( f −1(v))+1=d(v1)

n(v) ≤ n(v2),

which yields v1 ≺ v2 in contradiction to our assumption.
To show FP satisfies strong incentive compatibility under Mboth, note that a

manipulation by v cannot change d(v) or d(v ′) ∀v ′ : d(v ′) < d(v). Moreover, v
and its sybils cannot gain any new edges from vertices closer to v or change their
internal edges. For this reason, n(v) cannot increase and n(v ′) cannot decrease for
all v ′ s.t. d(v ′) ≤ d(v). Thus, FP does indeed satisfy strong incentive compatibility
under Mboth.

To show FP does not satisfy ranked IIA nor weak maximum transitivity, consider
the graph in Figure 9. FP ranks this graph as follows: a ≺ b ≺ y ≺ z ≺ x ≺ s.
Consider the profile 〈(2); (1, 1)〉. If we compare x and y we get (1, 1) ≺ (2), but if
we compare a and b we get (2) ≺ (1, 1), in violation of ranked IIA. Furthermore,
the latter comparison is in violation of weak maximum transitivity, as required.

5.3. RELAXING INCENTIVE COMPATIBILITY. When we relax incentive compat-
ibility, we find an interesting family of PRSs that rank the agents in accordance
with their in-degree, breaking ties by comparing the ranks of the strongest pre-
decessors. We have previously presented these systems in the context of general
ranking systems [Altman and Tennenholtz 2008], and we shall now adapt them to
the personalized setting by explicitly letting s have the highest value.
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The recursive in-degree systems work by assigning a rational number trust value
for every vertex. This value is based on the following idea: rank first based on the
in-degree. If there is a tie, rank based on the strongest predecessor’s trust, and so
on. Loops are ranked as periodic rational numbers in base (n + 2) with a period
the length of the loop, but only if continuing on the loop is the maximally ranked
option.

The recursive in-degree systems differ in the way different in-degrees are com-
pared. Any monotone increasing mapping of the in-degrees could be used for the
initial ranking. To show these systems are well defined and that the trust values can
be calculated, we define these systems as follows:

Definition 5.3.1. Let r : N �→ N be a monotone nondecreasing function such
that r (i) ≤ i for all i ∈ N. The recursive in-degree PRS with rank function r is
defined as follows: Given a graph G = (V, E) and source s, the relative ranking of
two vertices is based on a numeric calculation:

v1 �RIDr
G,s v2 ⇔ valuer (v1) ≤ valuer (v2),

where valuer (v) is defined by maximizing a valuation function vpr (·) on all paths
that lead to v:

valuer (v) = max
a∈Path(v)

vpr (a). (3)

To ensure the definition is sound, we eliminate loops, and define the path in reverse
order:

Path(v) = {(v = a1, a2, . . . , am)|
(am, . . . , a1) is a path in G ∧ (am−1, . . . , a1) is simple
∧∀i ∈ {1 . . . m − 1} : ai �= s}.

The path valuation function vp : V ∗ �→ Q defines the value to conform to a
lexicographic order on in-degrees along the path, with a special exception for s:

vpr (a1, a2, . . . , am) = 1

n + 2

⎡
⎢⎢⎢⎢⎢⎣

{
n + 1 a1 = s
r (|P(a1)|) Otherwise
+{

0 m = 1
vpr (a2, . . . , am, a2) a1 = am ∧ m > 1
vpr (a2, . . . , am) Otherwise.

⎤
⎥⎥⎥⎥⎥⎦ (4)

Note that vpr (a1, a2, . . . , am) is infinitely recursive in the case when the path
contains a loop (c.f. a1 = am ∧m > 1). For computation sake, we can redefine this
case finitely as:

vpr (a1, . . . , am, a1) =
∞∑

i=0

1

(n + 2)mi

m∑
j=1

r (|P(a j )|)
(n + 2) j

= (n + 2)m

(n + 2)m − 1
vpr (a1, . . . , am). (5)

Further note that when the r function is constant (r ≡ 1), then the recursive
in-degree system becomes the distance system on Vs , where the vertices in V \ Vs
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FIG. 10. Values assigned by the recursive in-degree algorithm.

are ranked weaker, and the ordering among them is set according to the length of
the longest path (simple or not) leading to the vertex.

Example 5.3.2. An example of the values assigned for a particular graph when
r is the identity function is given in Figure 10. As n = 8, and the definition in (4)
is based on recursive division by n+ 2, the trust values are decimals which consist
of a concatenation of in-degrees along the maximal path, or 9 in the case of s.

The value 0.9 is assigned to s by the first case in (4). The value for a arises from
the path (s, a) and the last case in (4), where the recursive call gives the value of s
(0.9). This is added to r (|P(a)|) = 1 and divided by 10, giving the result 0.19.

The values of b and d arise from a loop consisting of these vertices. Applying
the middle case in (4), we have the equations

valuer (b) = vpr (b, d, b) = 1

10
[3+ vpr (d, b, d)]

valuer (d) = vpr (d, b, d) = 1

10
[3+ vpr (b, d, b)]

By using (5), we get the periodic decimals seen in Figure 10. The rest of the values
are similarly obtained by the last case in (4).

Note that even though there are several loops in the graph, the other loops are
not on a maximal path as defined above. An algorithm for efficiently computing
recursive-indegree is given in Altman and Tennenholtz [2008].

We shall now show that indeed all the axioms from Theorem 4.3 are satisfied
except incentive compatibility.

PROPOSITION 5.3.3. Let r : N �→ N be a nondecreasing function such that
r (i) ≤ i for all i ∈ N and define r (0) = 0. The recursive in-degree ranking system
with rank function r satisfies self-confidence, strong quasi-transitivity and ranked
IIA. If r is not constant,5 then the recursive in-degree system further does not satisfy

5 If r is constant, the system still does not satisfy strong incentive compatibility under either Mout or
Msybil, but only if we allow vertices that have no path from s.
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weak maximum transitivity nor strong incentive compatibility under either Mout

or Msybil.

PROOF. We will prove that in the entire graph (not just Vs) every comparison
profile 〈a; b〉 where a = (a1, . . . , ak), b = (b1, . . . , bl) is ranked as follows:

a � b ⇔ (k = 0) ∨ (r (k) < r (l)) ∨ [(r (k) = r (l)) ∧ (ak ≤ bl)] .

Note that this ranking of comparison profiles also implies strong quasi-transitivity.
To show comparison profiles are ranked as such, we will prove that

valuer (v) =

⎧⎪⎨
⎪⎩

0 v �= s ∧ P(v) = ∅
n+1
n+2 v = s

1
n+2

[
r (|P(v)|)+maxp∈P(v) valuer (p)

]
Otherwise

(6)

and note that 0 ≤ valuer (v) ≤ n+1
n+2 , and thus vertices other than s are ordered first by

r (|P(v)|) and then by maxp∈P(v) valuer (p), as required. Moreover, self-confidence
is satisfied because for all v �= s: valuer (v) < n+1

n+2 .
The two edge cases are trivial, we shall now concentrate on the primary case in

(6). Let v ∈ V \ {s} be some vertex where P(v) �= ∅. Denote Path′(p, v) as the
set of almost-simple directed paths to p stopping at s, which do not pass through
v unless immediately looping back to p:

Path′(p, v) = {(p = a1, a2, . . . , am)|
(am, . . . , a1) is a path in G ∧ (am−1, . . . , a1) is simple
∧∀i ∈ {1 . . . m − 1} : ai �= s
∧∀i ∈ {1, . . . , m − 2, m} : ai �= v ∧ am−1 = v ⇔ am = p}.

Now we see that:

valuer (v) = max
a∈Path(v)

vpr (a) =

= 1

n + 2

⎡
⎣ r (|P(v)|)+max(v=a1,...,am )∈Path(v){

vpr (a2, . . . , am, a2) a1 = am ∧ m > 1
vpr (a2, . . . , am) Otherwise.

⎤
⎦ (7)

= 1

n + 2

[
r (|P(v)|)+ max

p∈P(v)
max

a∈Path′(p,v)
vpr (a)

]
(8)

= 1

n + 2

[
r (|P(v)|)+ max

p∈P(v)
max

a∈Path(p)
vpr (a)

]
= 1

n + 2

[
r (|P(v)|)+ max

p∈P(v)
valuer (p)

]
.

To show that the equality (8) holds, assume for contradiction that there exists
p ∈ P(v) and a ∈ Path(p) such that

vpr (a) > max
p′∈P(v)

max
a′∈Path′(p′,v)

vpr (a′). (9)

From a ∈ Path(p) \ Path′(p, v), we know that ai = v for some i ∈ {1, . . . , m}.
Assume wlog that i is minimal. Let b denote the path (p = a1, a2, . . . , ai , p) and
let c denote the path (p′ = ai+1, . . . , am, a j+1, . . . , ai+1) if am = a j for some j < i
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FIG. 11. Example of paths from the proof of Proposition 5.3.3.

FIG. 12. Graph from proof that Recursive In-degree is not incentive compatible.

or (p′ = ai+1, . . . , am) otherwise. An example of such paths is given in Figure 11.
Note that b ∈ Path′(p, v) and c ∈ Path′(p′, v), where p, p′ ∈ P(v). Now, note that

vpr (a) = (n + 2) j − 1

(n + 2) j
vpr (b)+ 1

(n + 2) j
vpr (c),

and thus vpr (a) must be between vpr (b) and vpr (c), in contradiction to
assumption (9).

We shall now prove that recursive in-degree is not incentive compatible under
Mout or Msybil and does not satisfy weak maximum transitivity. Let i ∈ N be the
minimum number such that r (i) > 1. Consider the graph G in Figure 12, where
there are i vertices labeled x . This graph is ranked x ≺ t ≺ s, where x refers to all
vertices labeled x . Weak maximum transitivity is not satisfied because x ≺ t even
though s � x . Let x ′ be one of the vertices labeled x . It can perform a manipulation
inMout by removing its edge to t , and thus changing the ranking to x � x ′ � t ≺ s.
It can also perform a manipulation in Msybil by creating i additional sybils of itself
and creating a complete clique thus changing the ranking to x ≺ v � x ′ � t ≺ s,
where v are the new vertices involved in the manipulation.

For an extensive study of the recursive in-degree system in the context of general
ranking systems see Altman and Tennenholtz [2008].

6. Concluding Remarks

We have presented a method for the evaluation of personalized ranking systems
by using axioms adapted from the ranking systems literature, and have evaluated
existing and new personalized ranking systems according to these axioms. As most
existing PRSs do not satisfy these axioms, we have presented several new and
practical personalized ranking systems that satisfy subsets, or indeed all, of these
axioms. We argue that these new ranking systems have a more solid theoretical
basis, and thus may very well be successful in practice.

Furthermore, we have proven a representation theorem for the Strong Count
ranking systems, which are the only systems that satisfy all our axioms.

Journal of the ACM, Vol. 57, No. 4, Article 26, Publication date: April 2010.



26:34 A. ALTMAN AND M. TENNENHOLTZ

This study is far from exhaustive. Further research is due in formulating new
axioms, and proving representation theorems for the various PRSs suggested in
this paper. An additional avenue for research is modifying the setting in order to
accommodate for more elaborate input such as trust/distrust relations or numerical
trust ratings, as seen in some existing personalized ranking systems used in practice.
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