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Abstract. The need for computationally efficient decision-making techniques together with the desire
to simplify the processes of knowledge acquisition and agent specification have led various research-
ers in artificial intelligence to examine qualitative decision tools. However, the adequacy of such tools
is not clear. This paper investigates the foundations of maximin, minmax regret, and competitive ratio,
three central qualitative decision criteria, by characterizing those behaviors that could result from
their use. This characterization provides two important insights: (1) under what conditions can we
employ an agent model based on these basic qualitative decision criteria, and (2) how “rational” are
these decision procedures. For the competitive ratio criterion in particular, this latter issue is of
central importance to our understanding of current work on on-line algorithms. Our main result is a
constructive representation theorem that uses two choice axioms to characterize maximin, minmax
regret, and competitive ratio.
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1. Introduction

Decision theory plays an important role in fields such as statistics, economics,
game-theory, and industrial engineering. More recently, the realization that
decision making is one of the central tasks of artificial agents has led to much
interest in this area within the artificial intelligence (Al) research community.
Some of the more recent work on decision theory in Al concentrates on
qualitative decision-making tools. For example, Boutilier [1994] and Tan and
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Pearl [1994] examine semantics and specification tools for qualitative decision
makers, while Darwiche and Goldszmidt [1994] experiment with qualitative
probabilistic reasoning in diagnostics; many other contributions to this area
appear in Doyle and Thomason [1997]. Such work has two central motivations in
mind. First, one hopes that qualitative tools, because of their simplicity, will lead
to faster algorithms. Second, qualitative representations may be easier to specify
and easier to obtain from experts, leading to a simpler knowledge acquisition
process. Indeed, for these reasons Al has often been concerned with qualitative
tools and representation techniques.’

Research into the foundations of decision theory is motivated by two major
applications: agent modeling and decision making. Agent modeling is often the
main concern of economists and game-theorists; they ask questions such as:
under what assumptions can we model an agent as an expected utility maximizer?
In artificial intelligence, we share this concern in various areas, most notably in
multi-agent systems, where agents must represent and reason about other agents.
Decision making is often the main concern of statisticians, decision analysts, and
engineers; they ask, how should we model our state of information, and how
should we choose an appropriate action based on this model? The relevance of
this question to the design of artificial agents is obvious. The foundational
approach helps answer these questions by describing the basic principles that
underlie various decision procedures.

One of the most important foundational results in the area of classical decision
theory is Savage’s theorem [Savage, 1972], described by Kreps [1988] as the
“crowning achievement” of choice theory. Savage provides a number of condi-
tions on an agent’s preference among actions. Under these conditions the agent’s
choices can be described as stemming from the use of probabilities to describe
her state of information, utilities to describe her preferences over outcomes, and
the use of expected utility maximization to choose her actions. Economists use
Savage’s results to understand the assumptions under which they can use
probabilities and utilities as the basis of agent models; decision theorists rely on
the intuitiveness of Savage’s postulates to justify the use of the expected utility
maximization principle. There are numerous other axiomatizations of the princi-
ple of expected utility maximization,? and much effort has been made to relax the
standard representation to deal with various variants of the probabilistic deci-
sion-making model, in particular, nonadditive, nontransitive and nonregular
preferences over acts [Fishburn 1988].

While the emphasis on the quantitative probabilistic framework is natural
given the prominence of probability theory in various scientific disciplines, more
effort is needed to understand the basic principles underlying qualitative decision
making. The use of qualitative decision tools is likely to come with a price in
terms of decision quality, and it is important to develop a better understanding of
the basic properties of different qualitative decision making approaches. Our aim
in this paper is to initiate work on the foundations of qualitative decision making

! For example, work on qualitative notions of knowledge and belief [Halpern 1988; Levesque 1986],
belief revision [Gardenfors 1992], nonmonotonic reasoning [Ginsberg 1987], planning [Allen et al.
1990], and qualitative physical models [Forbus 1985].

2 See, for example, Savage [1972], Anscombe and Aumann [1963], Blum et al. [1991], Kreps [1988],
and Hart et al. [1994].
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that can help clarify these properties. Our main contribution consists of a
number of representation theorems for three qualitative decision criteria: maxi-
min [Wald 1950], minmax regret and competitive ratio. The first two criteria are
well known in the decision theory literature [Luce and Raiffa 1957; Milnor 1954]
while competitive ratio is used in the theoretical computer science literature as
the primary optimization measure for on-line algorithms (see, e.g., Borodin and
El-Yaniv [1998] and Papadimitriou and Yannakakis [1989]). A central property
in all these results is that of closure under union: if an agent prefers action a over
b given that the possible worlds are s; and s, and she prefers a over b when the
possible worlds are s5 and s,, then she still prefers a over b when the possible
worlds are s, s,, s3 and s,. This condition is strictly stronger than a similar
version of Savage’s sure-thing principle which would require that {s,, s,} N {s3,
s4+ = 0. The other conditions are more technical, and we defer their presenta-
tion to Sections 3 and 4.

The term qualitative decision theory is somewhat fuzzy, and within Al one can
identify two central formal approaches. The first approach attempts to provide
qualitative tools for making decisions that are consistent with classical decision
theory. Here, the central idea is to replace probability and utility functions with
non-quantitative descriptions of beliefs and preferences that are, nevertheless,
consistent with classical decision theory. Special decision making algorithms can
be applied to these representations yielding behavior consistent with classical
decision theory. For example, Doyle and Wellman [1994] considered formal
languages for making ceteris paribus statements. Similarly, Boutilier et al. [1997]
use conditional statements of preference to construct a preference relation
consistent with the Von Neumann-Morgenstern axioms. However, a complete
framework supporting this type of inference has yet to be developed.

A second approach aims to supply qualitative tools for representing and
reasoning with beliefs and preferences that do not necessarily conform to the
axioms of classical decision theory. Examples of work along these lines include
Boutilier’s work on the representation of and reasoning with qualitative state-
ments of preference and normality [Boutilier 1994], similar work by Tan and
Pearl [1994] on specifying and querying statements of conditional preference, the
work of Dubois and Prade [1995] and Dubois et al. [2000] on possibilistic
analogous of classical decision theoretic tools, and Lehmann’s work on more
qualitative versions of Savage’s theorem [Lehman 1996]. Our work, too, fits
within this approach since it focuses on decision criteria that are not consistent
with the principle of expected utility maximization. The three criteria discussed
in this paper do not require a quantitative measure of likelihood and their
representation of preferences requires integer valued value functions or even a
simple preorder relation. Indeed, in their basic form, these criteria completely
ignore degree or cumulation of belief, although these can be introduced, to some
extent, as we discuss in Section 7.

The main motivation for our study is the foundations of qualitative decision
theory, but our results have two additional interesting ramifications. First, the
competitive ratio decision criterion plays a major role in the analysis of on-line
algorithms [Borodin and El-Yaniv 1998; Papadimitriou and Yannakakis 1989].
Hence, our representation theorems for this criterion should be relevant to the
foundations of research in that area. Second, our results show how certain
agents’ behaviors can be represented compactly: There are different ways in
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which we can encode an agent’s behavior (or program). One simple, but
space-consuming manner for representing an agent’s behavior is as an explicit
mapping from the agent’s local state to actions. Alternatively, probability and
utility functions (or their qualitative counterparts) can be used to implicitly
represent certain behaviors if we wish to cut down program storage and program
transmission costs. The (constructive) existence theorems in this paper character-
ize behaviors that can be represented in O(nm log(nm)) space, where n is the
number of states of the environment, and m is the number of possible actions.
This is to be contrasted with a possibly exponential explicit representation.

In Section 2, we define a model of a situated agent and two alternative
representations for its program or behavior. One is a simple policy that maps an
agent’s state of information to actions, while the other represents the agent’s
program (or behavior) implicitly using the maximin decision criterion. Our aim is
to present conditions under which simple policies can be represented implicitly
using qualitative decision criteria such as maximin. This will be carried out in
three steps: In Section 3, we provide an axiomatization for maximin in the case of
agents that must decide between two actions in various states. In Section 4, we
consider agents that choose among an arbitrary, finite set of actions. We show an
axiomatization for maximin in this more elaborate setting. In Section 5, we show
that a policy has a maximin representation if and only if it has a minmax regret or
a competitive ratio representation. This immediately implies that the axiomatiza-
tion of maximin applies to minmax regret and competitive ratio as well. In Section
6, we consider some of the implications of our axiomatization on the adequacy of
qualitative decision procedures. As the reader will surely note, our formulation
differs from many other standard models in the form given to the utility function
and in the role of beliefs. These differences are examined more closely in Section
7. We conclude with a brief summary and discussion of related work in Section 8.
Proofs appear in the appendix.

2. The Basic Model

In this section, we define a fairly standard agent model. Then, we define the
concept of a policy, which describes the agent’s behavior, and finally, we suggest
a qualitative manner for implicitly representing (some) policies using the concept
of value and the maximin decision criterion.

Definition 1. Let States be the (finite) set of possible states of the world. An
agent is a pair of sets, (LocalStates, Actions), which are called, respectively, the
agent’s set of local states and actions.

Let PW: LocalStates — 25“'*\() be a function on LocalStates such that (1)
PW(l) = PW(l') iff | = I', and (2) For each subset S of States, there exists
some [ € LocalStates such that PW(l) = §. We refer to PW(I) as the set of
worlds possible in (or consistent with) local state /.

Each state in the set States describes one possible state of the external world,
that is, the agent’s environment. This description does not tell us about the
internal state of the agent (e.g., the content of its registers) that is described by
an element of the set of local states. We view this set as describing the agent’s
possible states of information, or its knowledge (see e.g., Fagin et al. [1995] and
Rosenschein [1985]). Hence, the sets LocalStates and States are disjoint, though
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closely related through the function PW(/). In addition to a set of possible local
states, the agent has a set Actions of actions. One can view these actions as the
basic control signals the agent can send to its actuators. This concept of action
differs from the notion of act found in most other work in this area, and we find
it more natural for our purpose. We return to this issue in Section 7.

With every local state I € LocalState we associate a subset PW(Il) of States,
understood as the possible states of the world consistent with the agent’s
information at /. That is, s € PW(/) iff the agent can be in local state / when the
current state of the world is s. In this paper, we identify / with PW(l) and use
both interchangeably. We require that / = [" ifft PW(l) = PW(l') and that for
every S C States there exists some / € LocalStates such that PW(l) = S.? Notice
that the set LocalStates does not constitute a partition of the set States.
Moreover, for any two different local states /, [’ there are no constraints on the
relationship between PW(l) and PW(l') (except that they must be different).*

Like other popular models of decision making (e.g., Savage [1972] and
Anscombe and Aumann [1963]), our model considers one-shot decision making.
The agent starts at some initial state of information (i.e., some local state) and
chooses one of its possible actions. This choice of action is a function of the
agent’s state of information, as described by the agent’s policy (also called
protocol in Fagin et al. [1995] and a strategy in the game-theoretic literature [Luce
and Raiffa 1957]), which maps each information state to an action.

Definition 2. A policy for an agent (LocalStates, Actions) is a function
®: LocalStates — Actions.

A naive description of the policy as an explicit mapping between local states
and actions is exponentially large in the number of possible worlds because
|LocalStates| = 215"l Moreover, requiring a designer to supply this mapping
explicitly is unrealistic. Hence, a method for implicitly specifying policies is
desirable. In particular, we would like a specification method that helps us judge
the quality of a policy. Classical decision theory provides one such manner: the
policy is implicitly specified using a probability assignment pr over the set States
and a real valued utility function u over a set O of action outcomes. The action
to be performed at local state / is obtained using the principle of expected utility
maximization:

argmaxa EActions E pr(s) u (a (S)) >
sEPW(l)

where a(s) is the outcome of action ¢ when the state of the world is s. We wish
to present a different, more qualitative representation. We will not use a
probability function and our value function u(-,-) takes both the action and the
state of the world as its arguments and returns some value in a totally preordered
set. (Notice the use of qualitative values rather than quantitative utilities.) For

3 This assumption is made to simplify presentation. With small modifications, our discussion and
results still hold when the set of local states is smaller.

4 We can define the set of global states of the world, each of which describes a possible joint state of
the agent and the external world as the set § = {(/, s):s € PW(l)}. One can identify local states
with partitions of 4.
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convenience, we will use integers to denote the relative positions of elements
within this set.

Our choice of a value function dependent on both states and actions differs
from the more typical definition of utility functions which do not depend on an
action component. However, in this respect, it resembles much of the earlier
work on the decision criteria discussed here (e.g., Milnor [1954] and Luce and
Raiffa [1957]), which used the state-action formulation. In Section 7.2, we discuss
this choice in more detail and sketch an alternative approach based on the action
independent formulation.

In our representation, the agent’s action in a local state / is defined as:

argmax, e Aciions min (I/t (Cl ’ S))
sEPW(L)

That is, the agent takes the action whose worst-case value is maximal. This
decision criterion is referred to in the literature as maximin and it embodies a
cautious, risk-averse attitude to decision making.

Definition 3. A policy % has a maximin representation if there exists a value
function on Actions X States such that for every [ € LocalStates

@(1) = argmaxaEAclions mln (u((l, S))
sEPW(l)

That is, % has a maximin representation if there is a value function such that in
every local state /, if the agent were to make a decision based on this value
function and its state of information using the maximin criterion, it would come
up with the action P (/).

Given an arbitrary agent and a policy % adopted by the agent, it is unclear
whether this policy has a maximin representation. It is the goal of this paper to
characterize the class of policies that have such representations. From this result,
we hope to learn about the conditions for modeling agents using the maximin
decision criterion and to understand the rationality of using this criterion. As it
turns out, this will also teach us about the conditions for modeling agents using
the minmax regret and competitive ratio decision criteria and the rationality of
using these decision criteria. Besides the primary relevance of these results to the
foundations of qualitative decision theory, they can be interpreted as character-
izing policies with compact representation. As we remarked, policies can be
represented naively using space exponential in States. The implicit maximin
representation provides a much more succinct representation; its size is
O (log(|States| - |Actions|) - |States| - |Actions]).

3. Existence Theorems for Binary Decisions

This section and the following one present three representation theorems for
maximin. Here, we examine policies that choose between two actions, and later,
we provide more general representation theorems for maximin.

A property of protocols that plays a central role in obtaining maximin
representations is that of closure under unions. Policy % is closed under unions if
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whenever the same action is chosen in two different local states /, [’ in which the
agent considers possible the sets of states U and V, respectively, this same action
is chosen when the states the agent considers possible are U U V.

Definition 4. We say that a policy P is closed under union if P(U) = P (W)
implies ?(U U W) = ®(U), where U, W C States.

Example 1. As an example, suppose that our agent is instructed to bring
coffee when it knows that the temperature is either cold or ok and when it knows
that the temperature is either ok or hot. Hence, if the agent has little information
about the temperature, and all it knows is that the weather is either of cold, ok,
or hot, it should still bring coffee if its policy is closed under unions. This sounds
perfectly reasonable. Consider another example: Alex likes Swiss chocolate, but
dislikes all other chocolates. He finds an unmarked chocolate bar and must
decide whether or not he should eat it. His policy is such that, if he knows that
this chocolate is Swiss or American, he will eat it; if he knows that this bar is
Swiss or French, he will eat it as well. If Alex’s policy is closed under unions, he
will eat this bar even if he knows it must be Swiss, French, or American. If fact,
suppose that Alex would eat this bar whenever he knows that it is either Swiss or
x, for any other manufacturing country x. If his policy is closed under unions, he
will still eat the bar if all he knows is that it must be Swiss, German, French,
American, Canadian, or Israeli. Hence, we see that Alex dreads the possibility of
not eating Swiss chocolate, and would risk the inferior taste of all other brands
rather than miss out on this opportunity.

Consider attempting to find a maximin representation for Alex’s policy by
attempting to fill in the values for the following table:

| [Swiss [ z | y |
eat Uy V3 | Us
dont-eat Uy vys | Vg

Assume that v, < vy, v5 < v,, and v5 < v,. What determines which action is
recommended by the maximin criterion when more than one world is possible is
which of the lower values is worst, for example, is v; < v, or v, < v3? In our
case, we know that v, < v; and that v, < vs because Alex would prefer to eat
any chocolate as long as it is possible that it is Swiss. Thus, it is easy to see how
the closure under union property must follow: v, will remain the lowest value in
the combined context where we have v; and v as well. In general, if some value
is worst in one particular context and it is worst in another particular context, it
will be worst when we “combine” these contexts. Because, in maximin, it is these
worst-case values that really matter, we get the closure under union property.

We can show that, in the restricted binary action case, closure under unions is
also sufficient to obtain a maximin representation because it enforces a preorder
relation over the values of the worst-case actions for all states. Hence, our first
representation theorem for maximin shows that policies containing two possible
actions that are closed under unions are maximin representable using a value
function defined on Actions X States.
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THEOREM 1. Let P be a policy assigning only one of two possible actions at
each local state, and assume that P is closed under unions and States is finite. Then,
% is maximin representable.

It is easy to see that every maximin representable policy would be closed under
union. Hence, we cannot expect a weaker characterization of this decision
criterion.

The following example illustrates our result.

Example 2. Consider the following policy (or precondition for wearing a
sweater) in which Y stands for “wear a sweater” and N stands for “do not wear a
sweater.”

{Cold} | {Ok} | {Hot} | {C,0} | {CH} | {O,11} | {C,0,H}
sweater Y N N Y N N N

It is easy to verify that this policy is closed under unions. For example, the
sweater is not worn when the weather is ok or when the weather is either hot or
cold; hence, it is not worn when there is no information at all (i.e., the weather is
either cold, ok, or hot).

Using the proof of Theorem 1, we construct the following value function that
represents the policy above:

cold | ok | hot

Y
N| 1 31 3

It is easy to verify that using this value function we obtain the original policy.

The proofs of Theorem 1 and all other theorems appear in the Appendix.

A slight generalization of this theorem allows for policies in which the agent is
indifferent between the two available choices. In the two action case discussed
here, we capture such indifference by assigning both actions at a local state, for
example, ?(l) = {a, a’}. Hence, we treat the policy as assigning sets of actions
rather than actions. We refer to such policies as set-valued policies, or s-policies.
We redefine the condition of closure under union in this context as follows:

Definition 5. We say that an s-policy & is closed under unions if for every
pair of local states U, W C States, (U U W) is either #(W), P(U), or
PU) U P(W).

Notice that when #(U) = & (W) closure under unions implies, as before, that
PWU) = P(U U W).

We require a number of additional definitions before we can proceed with the
representation theorem for s-policies. First, we define the following two binary
relationships on subsets of States.
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Definition 6. Let U, W C States. U >, W whenever ?(U U W) = P(U)
and ®(U) # P(W). U =4 W whenever P(U), P(W) and P(U U W) are all
different or if U = W.

U >, W tells us that the preferred action in U is preferred in U U W. U =
W is basically equivalent to U #4 W and W %, U.

Again, motivating this definition is the fact that what really matters in maximin
is worst case values. Suppose that there is a maximin representation for % and
that #(U) # P(W) and P(U U W) = P(U). It follows that the worst-case
value assigned to any state in W (corresponding to the worst action on ) must
be lower than the worst-case value assigned to any state in U. Similarly, if ?(U),
P (W) and (U U W) are all different then in any maximin representation of %
we must have that the worst-case values for U and W must be identical. These
intuitions give rise to the use of the < and = notations. They also make it clear
that some form of relationship resembling transitivity must exist with respect to
the >4 and = relations if % is maximin-representable.

Definition 7. We say that >, is closed under chains if whenever
Uy #y + - %y Uy, where ¥, € {>4, =4}, and P(U;) # P(Uy), we have that
U, = U,. Here, * is > if any of the *; is >4, and * is =4 otherwise.

The condition of being closed under chains helps us ensure that values
themselves can be mapped into a transitive binary relation. This will become
clearer when we present an extension of this property to arbitrary sets of actions.

Example 3. Suppose there are four possible states of the world s, 55, 53, 54.
The following (partially specified) policy & is closed under chains.

{s1} | {s2} [ {sa} | {54} | {51, 82} | {52,83} | {53,584} | {51,854}
Y N Y TN Y [N ]{¥YN T IY)

We see that s; >4 5,, S, =g S3, S3 =4 4, and s, >4 s,. Here is one value
function that could give rise to such preferences. Notice, in particular, the
worst-case values for each state.

S1 | S2 | S3 | S4
Y| 5|1
N

ol =

Finally, we say that P respects domination if the action assigned to the union of
a number of sets does not depend on the action assigned to those sets in this
union that are dominated by other sets with respect to >.

Definition 8. We say that P respects domination if, for all W, U, V, X C
States, we have that W >, U and V >, X implies that (W U U U V U X) =
PW U V).

Again, we can see how domination respect arises due to maximin’s emphasis
on worst-case values. If W >, U, then the worst-case value obtained on W is
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worse than the worst-case value on U. Similarly, if 1 >4 X, then the worst-case
value on V is less than the worst-case value on X. Clearly, for the case of two
actions, the worst-case value on W U U U IV U X will be the lesser value
between the worst case values of W and V. The action on which this value is
obtained will determine the action assigned to W U V. Thus, while closure under
unions enforces the needed constraints on the union of pairs of state sets,
domination respect enforces the needed constraints on larger unions. Together
with the closure under chains property, these conditions enable us to define a
preorder on the worst-case values for each state. Consequently, we can state the
following representation theorem for s-policies:

THEOREM 2. Let & be an s-policy for an agent (LocalStates, Actions) such that
(1) |Actions| = 2, (2) P is closed under unions, (3) P respects domination, (4) >
is closed under chains. Then, P is maximin representable.

It is readily seen that properties (2)—(4) hold for any policy that is maximin
representable whenever |Actions| = 2.

4. General Existence Theorems

The representation theorems we have seen so far have dealt with agents that
choose between two actions. Now, we wish to generalize these results to arbitrary
(finite) sets of actions. We will assume that, rather than a single most preferred
action, the agent has a total order over the set of actions associated with each
local state. This total order can be understood as telling us what the agent would
do should its first choice became unavailable. The corresponding representation
using maximin will tell us not only which action is most preferred, but also, which
action is preferred to which. That is, the agent will prefer action a to a’ in local
state / if and only if the worst-case outcome of performing a is better than the
worst-case outcome of performing a’ when the possible states of the world are
those in PW (/).

The intuitions we developed in dealing with the binary choice case will serve us
well here. As we will see, the properties we will concentrate on in the general
case are natural extensions of the properties developed in the binary case, both
of which stem from the central role that worst-case values play in the maximin
criterion. Our proofs, too, will rely on these similar intuitions, where our aim will
be to guarantee conditions that enforce a total preorder on the worst-case values
for each possible state of the world.

Definition 9. A generalized policy for an agent with local states LocalStates
and actions Actions is a function P: LocalStates — TO (Actions), where TO (Ac-
tions) is the set of total orders on Actions.

Generalized policy ? is maximin representable if there exists a value function
u( +, - ) on Actions X States such that for every pair of actions a, a’ € Actions
and for every local state [ € LocalStates, a is preferred to a’ in [ iff

min (u(a, s)) > min (u(a’, s)).
sePW(l) sePW(l)

When we allow an arbitrary set of actions, the generalization of closure under
unions to generalized policies is not a sufficient condition on policies for
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!

s |sUsd s J
d|a a a 3
a|d a a |32

Fic. 1. (a,s) <g (a', s’).

obtaining a maximin representation. The following definition introduces an
additional property needed:

Definition 10. Let P = {>W|W C States} be a set of total orders over
Actions. Given s, s’ € States and a, a’ € Actions, we write (a, s) <g (a’, s') if
(I)a" >;a,a >, a’',anda’ >y a;or(2)s =s" anda’ > a.

We say that < is closed under chains if whenever (a;, s,) <g (a,, $5)
<g -+ <g (ay ;) and either (1) a, >, a, and a; >, a, or (2) s; = s;, then
(a1, 51) <o (ar i)

As in Theorem 2, the property of closure under chains is required to ensure
transitivity of preference among outcomes and hence the possibility of mapping
outcomes to an ordered domain.

The left table in Figure 1 helps us clarify this definition. In it, we depict the
conditions under which (a, s) <y (a’, s") holds. There are three columns in this
table, each showing the agent’s preference relation over actions in different local
states. The possible worlds in these local states are s, s’, and {s, s'}. In s the
agent prefers a’ over a, in s’ it prefers a over a’, but when all the agent knows
is that the world is either in state s or s', it prefers a’ over a. Roughly, we can
say that (a, s) <4 (a’, s') if the agent dislikes taking action a in state s more
than it dislikes taking action a’ in state s’.

We can see how these ideas generalize those presented in the previous section.
The s >4 s’ relation used in the binary case is really (a, s) <g (a’, s'), where
a is the less preferred action in s and a’ is the less preferred action in s’.

The following example illustrates the closure under chains property:

Example 4. Suppose that there are three possible states of the world: snow-
ing and cold, raining and cold, or warm and neither snowing nor raining. I prefer
skiing to walking when it is snowing, but prefer walking to skiing when it is
raining. However, when I am uncertain about whether it will rain or snow, I'd
choose to walk. In this case (ski, rain) <g (walk, snow). I prefer skiing to jogging
when it is warm, and I prefer jogging to skiing when it is raining. However, I
really dislike jogging when it is not cold, so I prefer skiing to jogging if I am
uncertain whether it is warm or raining. Hence, (jog, warm) <y (ski, rain).
Suppose that, in addition, I prefer walking to jogging when it is warm, and I
prefer jogging to walking when it snows. The closure under chains condition
implies that (jog, warm) <g (walk, snow), and hence I'd prefer walking to jogging
if I am uncertain whether it will be warm or it will snow.

What we can see is that closure under chains is closely related to a transitivity
of dislikes property: If I dislike skiing in the rain more than I dislike walking in
the snow and I dislike jogging in warm weather more than I dislike skiing in the
rain, I clearly dislike jogging in the rain more than I dislike walking in the snow.
Although this sounds quite plausible, the problematic part of the maximin
criteria is its exclusive focus on these “dislikes” in making a decision (from which
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its risk averse flavor stems). This worst-case perspective is enforced by the
closure under chains property.

As the following theorem shows, closure under chains together with a natural
generalization of closure under unions suffice to guarantee a maximin represen-
tation when |Actions| = 2. Indeed, our preference relation over arbitrary sets of
actions induces many preferences over binary action choices. We can understand
condition (1) below as requiring each of these preference relations to satisfy the
closure under unions property.

THEOREM 3. Let Actions be an arbitrary set of actions, and let >y, for every
W C States, be a total order such that

(1) ifa >y a" and a >, a’, then a >y, a’, and
(2) <y is closed under chains.

Then, the generalized policy P described by {>, | W C States} is maximin
representable.

Finally, in the most general (finite) case, one has an arbitrary set of actions
and preferences that are described using a total preorder. That is, the agent can
express indifference among a set of actions in a particular local state.

We introduce the following definitions:

Definition 11. A generalized s-policy for agent (LocalStates, Actions) is a set
{=p|W C States} of total preorders over Actions. For each W C States, the
preorder =, describes the preferences of the agent over actions in the local state
U.

We write a <, a’ whena =<, a' and a’ % a.

The treatment of generalized s-policies is motivated by the same approach
used for s-policies: We extend the ideas used to handle s-policies in the case of
binary choice by concentrating on the binary relations that are naturally induced
in the more general case; namely, the relation between the value of state-action
pairs. Again, the aim is to sufficiently constrain these relations so that a total
preorder on state-action pairs can be defined. The value function will simply
reflect this total preorder.

The notion of closure under unions for generalized s-policies is closely related
to the definition for the binary case, and is defined as follows:

Definition 12. A generalized s-policy {=</|U C States} is closed under
unions if

® g =, a’ and a =y, a’ implies a =,y a'; and
® g <y a' anda <y a' implies a <y a’.
We introduce the following two binary relations on O = Actions X States.
Definition 13. (a, s) <g (a', s') if
®a Fa',s#Fs',a =;a',a" =g a,anda <, a'.
® s =g anda <;a’.
(aa S) o (a,’ S,) if
!

®a Fa',s#s',a=;a',a = a,a = ya anda =, a’.
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s =ys',a" =;a,anda =;a’.

The definition of closure under chains is much as before:

Definition 14. <y and =, are closed under chains if whenever (a,, s;) *;
(ay, $5) *,5 -+ - %, _q (ay, sx), where each *; is either =, or <y, and either (1)
ay # a, 81 F g, ay = ag, and a, = ay; or (2) sy = 545 then (ay, s1) * (ay,
si), where = is = if all the *, are =g, and it is <g otherwise.

THEOREM 4. Let Actions be an arbitrary set of actions, and let {=, | U C
States}, be a set of total preorders over Actions such that

(1) {=y|U C States} is closed under unions, and

(2) <y and =4 are closed under chains.
Then, the generalized policy {=,|U C States} is maximin representable.

Again, it is easy to see that a preference order based on maximin will have the
properties described in this theorem.

As far as offering compact representation to policies, we can understand this
theorem as characterizing a class of policies that can be represented using
polynomial space. If we measure the size of the representation as a function of
|States| - |Actions| = n, then we get a maximin representation of size O(n -
log(n)), while the naive representation of a policy is of size O(2"). In that sense,
a similar theorem in the case of classical decision theory would characterize the
class of policies that are representable using the maximal expected utility criteria.
However, as far as we know, no such characterization exists when the state space
is finite. In the infinite case (as in Savage’s treatment), space conservation is of
little interest.

Unfortunately, in many cases of interest the state space is prohibitively large.
Hence any representation linear in |States| is still too large. Today, many Al
researchers are interested in structured representation that center on features of
states (i.e., state variables) and their values. Here, influence diagrams [Howard
1961] are of particular interest because they can be viewed as a compact
decision-theoretic representation of probability and utility functions, and conse-
quently, of policies. In many interesting cases, they provide a representation that
is logarithmic in the size of |States| - |Actions|. A similar approach can be taken in
the context of maximin representation when for “structured” value functions, for
example, when the value is simple function (such as sum) of state features. We
are not aware of work along the axiomatic approach that has attempted to give
characterization of policies in this manner (either using the maximal expected
utility criterion or other criteria) although there is well-known work on struc-
tured utility functions (see Luce and Raiffa [1957] and reference therein). It
should be noted, though, that as implicit representation of policies, influence
diagrams are somewhat problematic because the process of showing that an
actual policy is optimal (and hence represented by the diagram) is NP-hard
[Cooper 1990; Shimony 1994]. However, we believe that structured representa-
tions based on maximin will not present this computational difficulty.
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5. Minmax Regret and Competitive Ratio

Maximin is a classical qualitative decision criterion. In this paper, we also
consider two other basic decision criteria, which are defined below.

Definition 15. Given a value function U on Actions X States, a state s €
States, and an action a € Actions, define R(a, s) = max, c,(U(a’, s) — U(a,
s)). In local state I, the minmax regret decision criterion selects an action

a =argmin{ max R(a’',s)
a'€A sePW(l)

R(a, s) measures the agent’s “regret” at having chosen a when the actual state of
the world is 5. That is, it is the difference in value between the optimal outcome
on state s and the outcome resulting from the performance of a in s. Minmax
regret attempts to minimize the maximal regret value over all possible worlds.

Definition 16. Given a value function U on Actions X States, s € States, and
a € Actions, define R(a, s) = max,.c4(U(a’, s)/U(a, s)).” In local state /, the
competitive ratio decision criterion selects an action

a = arg min{ max R(a’,s)
aed | sePw()

Much like minmax regret the competitive ratio criterion attempts to optimize
behavior relative to the optimal outcome. The only difference is that here we are
interested in ratio, rather than difference.

To illustrate these rules, consider the following decision matrix, each action of
which would be chosen by a different decision criterion:

‘ $1 ! Sy | chosen by: {

ay | 60 | 10 | minmax regret
az | 40 | 20 | competitive ratio
az { 30 | 21 maximin

Notice that minmax regret and competitive ratio are somewhat more quantita-
tive than maximin, since they care about the actual numbers, their difference, or
ratio. However, unlike the expected utility criterion, the three criteria discussed
in this paper do not require a quantitative measure of likelihood. In addition, it
will be evident from the previous representation theorems and the result that
follows that we can restrict our attention to integer valued value functions when
we use these decision criteria. Finally, notice that all three decision criteria use
space polynomial in the number of states and actions to represent the agent’s
preferences.

3 For ease of exposition we assume that values are greater than 0; in particular, the division is well
defined.
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Minmax regret is well known in the decision theory literature [Luce and Raiffa
1957; Milnor 1954]. The competitive ratio decision rule is popular in the
theoretical computer science literature (e.g., Papadimitriou and Yannakakis
[1989]), where it is used as the primary optimization measure for on-line
algorithms. Hence, representation theorems that teach us about the conditions
under which an agent can be viewed as using each of these decision criteria are
interesting both from the Al and theoretical computer science perspectives.

Definition 17. A policy &P is minmax regret/competitive ratio representable if
there exists a value function u( +, - ) on Actions X States such that for every pair
a, a' € Actions and for every local state / € L it is the case that a is preferred
toa’ in [ iff

max R(a,s) < max R(a’,s).
SEPW(l) sEPW(l)

Notice that the definitions for the minmax regret and the competitive ratio
representations are similar. The difference stems from the way R(a, s) is defined
in these cases. Notice that the value function assigns natural numbers to the
elements of Actions X States. Given these values the agent applies the min and
max operators to select its favorite actions.

We can prove the following:

THEOREM 5. A policy is maximin representable iff it is minmax regret/competi-
tive ratio representable.

Given this result, it follows that the representation theorems and axiomatiza-
tions for maximin will hold for the two other criteria as well. Interestingly,
although this result is not hard to show, it has not been observed before.

6. Interpreting the Results

What is the significance of our results? First, they imply that from a modeling
perspective, all three decision criteria are similar: Any agent whose choice
behavior can be modeled using maximin, minmax regret, or competitive ratio can
be modeled using any of the other decision criteria. However, these models will
differ in the value function they use. Second and most importantly, our results
expose the two fundamental properties of a number of basic qualitative choice
criteria: closure under chains and closure under unions, each of which captures
one essential aspect of the criteria we looked at.

Closure under chains is seemingly a restricted form of transitivity requirement
on the <, relation. In fact, it is responsible for the emphasis on worst case
performance placed by the three decision criteria in question. This, in turn, leads
to their perception as supporting a risk-averse form of reasoning emphasizing
safety levels. This emphasis of worst case outcomes follows from closure under
chains because, as defined, (s, a) <y (s', a') assumes that a is worse than a’ on
s and a’ is worse than a on s’. Had we defined the <, relation by concentrating
on the top performers (i.e., assuming a was better on s and a’ was better on s')
we would have obtained a representation theorem for the maximax criterion.
This greedy risk-seeking criterion prefers the action that has the best outcome on
some of the states.
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Closure under unions stipulated that if given a set V' of possible worlds the
agent prefers action a over a’, and given another set W of possible worlds the
agent prefers a over a’ as well, then it prefers a over a’ given V' U W. When V/
and W are disjoint, we obtain a property analogous to Savage’s sure-thing
principle [Savage 1972]. In this restricted form, this property seems essential
when we assume that actions are deterministic and all uncertainty about their
effects is modeled as uncertainty about the state of the world (as we do here).®
Closure under disjoint unions is a basic property of another decision criterion,
Laplace’s principle of indifference in which the action maximizing the sum of
values is preferred.

When the sets IV and W are not disjoint, closure under unions is a somewhat
less natural property of a rational decision maker. Intuitively, it is responsible for
the weak, qualitative notion of beliefs that these three decision criteria support.
To understand this, we recall the column duplication property [Milnor 1954].

Definition 18. A decision criterion has the column duplication property if
whenever it prefers an action a over an action a’ given a set V" of possible worlds,
it prefers a over a’ given any set of possible worlds V' U {s}, where s &€ V is
such that there exists some s’ € V such that U(d, s) = U(a, s") for all actions
a € Actions.

Intuitively, the column duplication property asserts that the agent’s prefer-
ences do not change if it considers another state possible which is identical, in
terms of its effects, to some existing state. Note that column duplication is just
the flip side of an equivalent property allowing for removal of one of two states
with identical values assigned to outcomes. Column duplication/removal allows
us to ignore the cardinality (or weight) of identical columns, and thus, cannot
occur where a stronger notion of state plausibility exists.

The following informal observation may be useful in understanding the closure
under unions property: A decision criterion is closed under unions iff it is closed
under disjoint unions and has the column duplication property. A precise formula-
tion of this result appears in the appendix.’

It has been observed that column duplication is a basic property of all three
decision criteria [Milnor 1954]. For instance, here is the table presented in
Section 5 with the column corresponding to s, duplicated. As can be seen, the
three decision criteria we have discussed choose the same action as before.

‘ $1 I S9 \ 83 | chosen by: |

a; | 60 | 10 | 10 | minmaz regret
as | 40 | 20 | 20 | competitive ratio
as | 30 | 21 | 21 mazximin

® However, when “actions” represent multi-step conditional plans, during whose execution the agent’s
state of information can change, this is no longer true.

7The column duplication property is associated with decision tables, for example, as discussed by
Milnor [1954] and we have to relate it to our formulation. In particular, we need to define a general
notion of a decision criterion and allow more flexible manipulation of states.
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Whether or not column duplication is reasonable depends on the state of
information of the agent and the conceptualization of the domain. It has been
suggested that this property is characteristic of states of complete ignorance
[Luce and Raiffa 1957].

In the literature (e.g., Luce and Raiffa [1957]), one finds various examples of
counterintuitive choices made by various qualitative criteria in various settings.
For instance, one can argue against maximin using the following matrix:

I S1 l So l e I Sg9 l 5100 ’
a; | 1 1 1 1 1
ae | 1000 | 1000 | 1000 | 1000 | 0O

Under maximin, the first action will be preferred, and this seems counterintui-
tive. While it is not our goal to advocate maximin, it is worthwhile to point out a
certain known problem with such examples; a problem which lies with the
meaning of the numbers used within the decision matrix. If the numbers in the
matrix above correspond to dollar amounts, or some objective criteria, such as
execution time, then maximin may not make much sense.® However, in many Al
contexts, we are not concerned with monetary payoffs. In that case, one may
suppose that the numbers used signify utilities. Yet, the concept of utility is
meaningless unless it is specified in the context of a decision criterion. For
example, the standard notion of utility is tailored for expected utility maximizers,
and it is somewhat awkward to use it in the context of a maximin agent. Of
course, once we interpret these values as “utilities” ascribed to a maximin agent,
this example is no longer counterintuitive.

Finally, we observe that another well-known qualitative decision criterion,
Hurwicz’s criterion, does not satisfy the property of closure under disjoint unions
(although it has the column duplication property). Hurwicz’s criterion is the
following generalization of maximin and maximax (maximax chooses the action
that maximizes the best payoff).

Definition 19. Given a value function U on Actions X States and a local state
[, the Hurwicz decision criterion selects an action a such that

a=argmax{ | «+ min U(a',s)| +|(1 —«a): max U(a’,s)
a'€A sePW(l) sePW(l)

8 Despite such examples, people often make decisions based on worst-case judgments or seek
performance guarantees, at least with respect to a set of plausible states (see Section 7.2 for a
discussion of this notion). In many domains, it is difficult to make reasonable likelihood estimates
and people opt for the more qualitative worst-case analysis. Indeed, the routine use of the
competitive ratio criterion in theoretical computer science stems from the difficulty of defining
appropriate notions of average case analysis.
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When « = 1, we obtain the maximin criterion, and when a« = 0, we obtain
maximax. The following matrix shows that Hurwicz’s criterion is not, in general,
closed under disjoint unions.

S1 1 821 53| 54
a; | B0 1501 4 | -1
ar, | 50| 10| 1 1

Suppose that « = 0.5. Under Hurwicz’s criterion, a, is preferred over a, given
either {s,, s,} or {s5, s,}. However, given {s,, s,, S5, S4}, a, is preferred over
al-

7. Extensions

Classical decision theory prescribes an agent’s behavior using both a utility
function and a probability function, while our representation theorems have
emphasized value functions. The closest analogue to probabilities, or beliefs, in
our model is the agent’s state of information. This state of information is
described by the agent’s local state with which a set of consistent states of the
world is associated by means of the function PW(-). We do not distinguish
between these states, that is, we do not ascribe different degrees of plausibility to
different consistent states. In addition, the value function we use in our
representation theorems is defined on state/action pairs, rather than on a
separate space of outcomes, as is generally the case in similar representation
theorems. Here, we take a closer look at our definition of values, and we show
one manner in which qualitative degrees of plausibility can be incorporated into
a qualitative representation.

7.1. DEFINING VALUES. Most standard treatments of decision theory, such as
Savage’s, reserve the term utility function to real valued functions on a space of
outcomes, consisting of a set of possible post-action states of the world. In
particular, in Savage’s formulation, the notion of an action (or rather, an act) is
reserved to a function that maps possible states of the world to outcomes. It is
possible for two different acts to result in the same outcome on a given state and
on two different states; and it is possible for a single action to have the same
outcome on different states. In contrast, we employed the term value to describe
a qualitative, for example, integer valued, function on state/action pairs. More-
over, our framework views actions as primitive entities. We believe there is merit
in both views. In particular, when we consider an artificial agent, the only
physically observable aspect of this agent’s behavior is its choice of action,
usually in the form of a control signal sent to the agent’s actuators. Our
representation is identical to the standard representation if it is assumed that the
outcomes of different actions on different states are different. Moreover, using
value functions that depend on both the state and the action makes practical
sense in our qualitative context: it is reasonable when the manner in which the
outcome was received is important, for example, the cost of an action, and it
allows us to use the value function to encode both the desirability of the action’s
outcomes and the likelihood of the state in which it is obtained. Finally, our use
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of this representation has enabled us to require an ordering relation over real
actions as opposed to the formulation of Savage and others, which requires an
ordering relation over acts, most of which are fictitious, unintuitive entities.

Nevertheless, it is desirable to understand how, for example, a maximin
representation would be obtained using a framework that employs the concept of
an outcome. In what follows, we outline such a result. We assume that there
exists a set Qutcomes of outcomes and that acts are functions from States to
Outcomes. We shall use o to denote the set of all acts. We assume that = is a
binary relation over s, and we say that f is at least as good as g whenever g < f
holds. We define f < g and f = g in the standard fashion. Such a preference over
the set of acts is maximin representable if an ordinal value function u on
Outcomes exists (in essence, a total preorder on Qutcomes) such that act f is as
preferred as g, written g = f, iff the worst-case value in f is at least as preferred
as the worst-case value in g.

Let us denote by f[;] the act that is identical to f except possibly on s € States,
where it assigns o, and let f(s) stand for the act in which f(s) is obtained on all
states in States. All maximin representable preference relations satisfy the
following:

Definition 20. = respects domination if f(s) = f(s') implies f[}('s)] = f.

That is, = respects domination if it is indifferent between any act f and a
similar act in which s’ in assigned f(s) instead of f(s') for some outcome f(s)
that is less preferred than f(s').

THEOREM 6. If < is a total preorder on s that respects domination then = is
maximin representable.

The proof of this theorem is left to the interested reader. It is worthwhile to
point out that, given a preference relation =, we cannot define the concept of f
being preferable to g given A C States in a manner analogous to that of Savage
[1972]. This stems from the fact that in a preference relation induced by maximin
it is possible to have acts f, f', g, g’ such that (1) f, f' agree on A4, (2) g, g’
agree on A, (3) f, g agree on States\A, (4) f', g’ agree on States\A4, (5) f < g,
and (6) f* = g’. In order to see this, one may consider the values of f, g, f', g’
when we have two states s and s'. Let u(g(s)) = u(g'(s)) = 1, u(g(s')) =
u(f(s")) = 3, u(f(s)) = u(f'(s)) = 2, and u(g'(s")) = u(f'(s')) = 1, then
we have that conditions (1)—(6) are satisfied by maximin, where A = {s}. This
contradicts one of Savage’s nontrivial axioms.

7.2. DEFINING BELIEFS. Quantitative representations of preference usually
employ a nontrivial representation of belief, usually in the form of a probability
assignment over the set of possible states of the world. Closure under union is
the manifestation of what most people would consider unintuitive in the qualita-
tive criteria we discuss—their complete indifference to the likelihood of each of
the states. In our current representation, one distinguishes between two types of
state: those that are consistent with the agent’s local state and those that are
inconsistent. However, much work in artificial intelligence employs a richer,
though still qualitative, notion of belief, which partitions the set of states that are
consistent with the agent’s state of information into two sets: the set of plausible
states and the set of implausible states. Finer distinctions are possible, whereby
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the set of implausible sets is partitioned again, and so on. It is commonly
envisioned that the agent makes its decision by considering only the most
plausible among its possible worlds. This concept of belief, or plausibility, is
easily incorporated into our current model by imposing additional structure on
the set States in the form of a ranking function. This model has been suggested
by, for example, Brafman and Tennenholtz [1994; 1997], Friedman and Halpern
[1994], and Lamarre and Shoham [1994]. Given a ranking function r: States —
N, we define the agent’s beliefs at local state / as:

B(l)={sePW() |if s € PW(l) then r(s) = r(s')}.

B(l) are often called the agent’s plausible states at the local state /. It is natural
to modify the decision criterion so that maximin is applied only to the plausible
states, instead of the possible states (see, e.g., Brafman and Tennenholtz [1994;
1997]). Therefore, at state / the agent chooses the following action:

argman ;e Aciions) MIN u(a, S) .
SEB(I)

It is natural to ask whether our results can shed some light on this alternative
approach to qualitative decision making. Clearly, any behavior that is maximin
representable can be represented using the ranked maximin representation
suggested above. (We use a ranking function that maps all states to the same
integer.) However, the converse is true as well. That is, if an agent can be
represented as using ranked maximin, it can also be represented as using the
standard maximin approach discussed in this paper. The proof of this result is
based on the following observations. Given a ranked maximin representation of a
policy, where there are m ranks and with maximal value n, we can replace the
value u(a, s) of an outcome (a, s) which corresponds to a state s in the mth
rank, by u'(a, s) = m - n + u(a, s). It is easy to see that by applying the
maximin criterion to u’, we obtain the same behavior as with the application of
the ranked maximin criterion to u. The implications of this observation is that
the ranked maximin representation is no more expressive than the standard
maximin representation, that is, it can capture the same set of behaviors. Hence,
ranked maximin is not, a priori a more rational decision criterion. Similarly we
can define ranked minmax regret and ranked competitive ratio and show that they
can represent the same set of policies as minmax regret and competitive ratio do
(respectively).

If we wish to represent preference relations among acts using values assigned
to outcomes, as discussed in Section 7.1, the ranked maximin representation does
provide additional expressivity, allowing for a representation of a larger class of
preference relation. One way to see this difference is to observe that, given any
permutation 7 of States, we have that f = w(f) for any act f whenever = is
induced by maximin. However, when = is induced by ranked maximin f = w(f)
only when 7 is a product of permutations of equally ranked states, that is,
permutations 7 such that for every s € States r(m(s)) = r(s). It is possible to
obtain postulates that capture this class of preference relations. Two steps must
be taken to achieve such postulates: First, we must provide a suitable definition
of conditional preference, that is, preference given A for every A C States. As we
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remarked above, we cannot imitate Savage’s definition of conditional preferences
when the preference relation is induced by maximin. Next, we must uncover the
ranking of the set of States. That is, we must define a partial preorder on States
based on the preference relation =, representing the agent’s ranking of the
possible states. For example, in order to find out the relationship between s and

!

s', we will use the agent’s conditional preferences given {s, s’}. For example,

suppose u(f(s)) = 0, u(f(s")) = 2, u(g(s)) = 0, u(g(s’)) = 1 and g < f,
then clearly r(s) > r(s'). The interested reader will be able to fill in the details.

8. Summary and Related Work

Decision theory is clearly relevant to Al and there is little doubt about the need
for decision making techniques that are more designer friendly and have nice
computational properties. Qualitative decision theory could offer such an alter-
native, but the question is: how rational is this approach in different domains?
One method of addressing this question is experimentation, as in Darwiche and
Goldszmidt [1994]. However, the prominent approach for understanding and
justifying the rationality of decision criteria has been the axiomatic approach.
This approach yields results that are more general than the experimental
approach because they are not domain specific. Using these properties, a
designer can assess the desirability of using a particular decision criterion in her
domain of application. Our work provides one of a few results within the
axiomatic approach that deal with qualitative decision criteria and helps us
understand the inherent properties of maximin, minmax regret, and competitive
ratio. Our representation theorems are constructive and suggest algorithms for
compiling an agent’s plan into concise mental-level representation. They show
that if we are willing to choose actions that are consistent with the conditions of
closure under unions and closure under chains, we can use a simple ordinal value
function to represent the agent’s preferences.

The reader should be careful not to confuse the work carried out in this paper
with the axiomatization of maximin and minmax regret by Milnor [1954]. Milnor
supplies axioms under which an agent would use maximin (and axioms under
which an agent would use minmax regret) to make its move in a game against
nature. In Milnor’s setting, the values are given and not ascribed to the agent
based on his choice among actions. In addition, Milnor does not consider the
behavior of the agent in various information states. Our axiomatization provides
conditions on the agent’s choice of action in various information states under
which the agent can be ascribed qualitative values and can be viewed as if it
adopts the maximin criterion to make its decision based on these values. We then
show that our axiomatization can be extended to the case where the agent uses
minmax regret or competitive ratio to choose its actions. Therefore, our work is
much closer in spirit to the approach taken by Savage.

Following Milnor, there has not been much interest among decision-theorists
in the use of qualitative rules such as maximin and minmax regret, and most work
in this area centered around the principle of expected utility maximization.
Nevertheless, in recent years, there is an increasing effort by game-theorists to
understand various more qualitative settings in which maximin plays a prominent
role. Of particular note are work by Gilboa and Schmeidler [1989], which
attempts to integrate the maximin perspective with an expected utility maximiza-
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tion perspective which has led to similar related efforts. Another related
axiomatization, by Hart et al. [1994] axiomatizes maximin in the context of
2-person zero-sum games. However, this axiomatization is probabilistic and does
not fit the framework of qualitative decision theory as considered in this paper;
in their setting the agent’s choice among probabilistic lotteries is given, and their
maximin decision criterion refers to probabilistic strategies.’ It is worth noting
that the notion of safety level, as captured by maximin is the basis of standard
solution concepts in game-theory, and in particular, that of Nash equilibrium
[Fudenberg and Tirole 1991].

An area where the use of a quantitative decision criterion, namely, competitive
ratio is of paramount important is that of on-line algorithms in Computer
Science. There, the need for an adequate axiomatization for this decision
criterion has been recognized [Bowdin and El-Yaniv 1998]. Indeed, a Milnor’s
style axiomatization is mentioned in the literature on on-line algorithms [Borodin
and El-Yaniv 1998] and is presented in El-Yaniv [2000]. Our representation
theorem is the first to introduce a Savage-style axiomatization (i.e., where
utilities are ascribed to the agents) for this basic and widely used decision
criterion.

Although researchers in artificial intelligence (and to some extent statisticians)
have examined and used various qualitative notions of knowledge, belief (e.g.,
Doyle [1989], Halpern and Moses [1990], and Brafman and Friedman [1995])
and preference (e.g., Doyle and Wellman [1994]) most effort has been on
defining these concepts and understanding the process of (qualitative) belief
revision following new information. More recently, ideas on how qualitative
notions of belief and preference can be combined have been examined [Tan and
Pearl 1994; Boutilier 1994]. However, investigations of the foundations of such
decision criteria have not been conducted. A few related works exist: Lehmann
[1996] presents an axiomatization of qualitative probabilities, similar to Savage’s
[1976] where preferences among acts are only partially ordered. Dubois and
Prade [1995] present a qualitative axiomatization of utilities, similar to von
Neumann and Morgenstern’s [1944] axiomatization of the principle of expected
utility maximization. Rather than use probabilities, Dubois and Prade use
possibility measures [Zadeh 1978] to define a qualitative notion of mixtures.
Roughly speaking, in this representation, sum over utilities is replaced by the min
operator (due to a risk averse attitude embodied in the axioms) while multipli-
cation is replaced by a max operator. Besides the technical differences with our
work, much like von Neumann and Morgenstern use of probabilities, Dubois and
Prade assume a predefined concept of belief in the form of a possibility
distribution over the states of the world. A recent extension of this line of work
[Dubois et al. 2000] presents a Savage-style axiomatization that is closer in spirit
to the approach presented here.

A number of natural extensions remain for future work, most prominently, the
generalization of our results to infinite state spaces. At this point, it is not clear
to us whether a straightforward generalization exists. In addition, an analysis of
additional qualitative representations of preference is needed.

 Recent work by Gilboa and Schmeidler [1995] examines case-based decision making, which should
be of interest to researchers in qualitative decision theory.
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Finally, the state space representation used in this paper are still too large in
most applications of interest. An important question for future work is charac-
terizing the class of behaviors that can be encoded compactly using a more
structured representation of states (e.g., as truth assignments to some set of
propositions).

Appendix A. Proofs

PrOOF OF THEOREM 1. We will use the following definition in the proof:

Definition 21. U >4 W, where U, W C States, if (U U W) = ®(U) and
PU) = P(W).

Ceamm 1. If Uy >4 - -+ >4 U and P(Uy) # P(Uy), then U, >4 U,. We will
refer to this property as closure under chains.

Proor. First, recall that we are assuming only two possible actions. Suppose
that U >4 V, V >4 W, W >4 X, and that ?(U) = a. We must show that P (U
U X) = a as well. Suppose not. In that case, we have that (U U X) = a’ and
that (V' U W) = a’ (since V >4 W and P (V) must be a’ because U >4 V).
Hence, since % is closed under unions, we have that (U U V U W U X) =
PU U X)U (VU W)) =a'. However, »(U U V) = a and P(W U X) =
a (because U >4 V and W >, X), which implies, using closure under unions,
that (U U VU W U X) = a, a contradiction. The same proof works for an
arbitrary chain of the form U; >4 --- >4 U,.

As we explain in the body of the paper, the main idea behind the various
constructions we use is to impose a total preorder on the worst-case values for
each state, from which we can derive a maximin representation. We now show
how the value function is constructed and prove that this value function
represents the policy.

(1) Seti to 0, and S to States.

(2) For each state v € States, let u(?(v), v) = n. (We let the value of the
preferred action in v be n = |States|).

(3) Let U = {s € S| there is no v € S such that v >, s}. (Among the states
to which the worst-case action has not been assigned a value, we now find
those that are the worst.)

(4) Let u(a, s) = i for every s € U and a such that a # P(s).

(5) Leti:=i + 1 and S := S\U.

(6) If S = 0, then terminate; otherwise, goto (3).

First, notice that the algorithm terminates because each time Step (3) is taken,
the set U is nonempty. If this were not the case, then, at Step (3), for every v €
S, there would be some v’ in § such that v’ >4 v. But, because closure under
chains and the fact that States is finite, this would imply the (impossible)
existence of two distinct states v, v' such that v’ >4 v andv >4 v'.

CLAM 2. Given the value function generated above, the maximin criteria yields
a unique most preferred action for every local state W.



Axiomatic Treatment of Three Qualitative Decision Criteria 475

PrOOF. Both actions can be equally preferred only if they have equal
worst-case outcomes. This could be the case if the set U constructed in Step (3)
at some particular iteration contains two states, s and v, on which % assigns a
different action. However, if that was the case then either s >4 v or v > s,
depending on the action assigned on {s, v}, and so both cannot appear in U
simultaneously.

CLam 3. By using maximin, we obtain behavior identical to that of the original
policy.

First, notice that this claim holds when the decision is made under certainty,
that is, when |PW(l)| = 1. This is immediate from our construction process. Let
Actions = {a, a'} and suppose that maximin chooses a on U. By definition of
maximin, it must be the case that for some w € U, u(a’, w) is the worst value
possibly obtained on U. Let 4, be those U worlds on which a is preferred and let
A, be those U worlds on which a’ is preferred. We claim that if v € 4,. then
w >4 v. To see this, consider our construction process. Since u(a’, w) is
minimal, w must have been chosen in Step (3) before all other elements of U.
Hence, we have that, for nov € A4,., is it the case that v >4 w. However, since
the action taken on elements of A/, and on w is different, we must have that v €
A, implies w >, v. (Because for every pair v, v’ of states that are assigned a
different action by % either v >, v’ or v’ >4 v.) This in turn implies that on
each local state of the form {v, w}, where v € A4, the action taken is a. Since
% is closed under unions, we have that a is taken on A4, U w. Since, by
definition, a is taken on A4, then by the fact that ® is closed under unions, we
have that @ is taken on 4, U A, U {w} = U.

This concludes the proof.

PrOOF OF THEOREM 2. We construct the value function much like in Theo-
rem 1.

(1) Seti to 0, and S to States.

(2) Let U = {s € S | there are no v, w € § such that w =4 s and v >, w}.
(3) Let u(a, s) = i for every s € U and a such that a ¢ P(s).

(4) Let u(a, s) = i for every s € U and a such that ®(s) = {a, a'}.

(5) Leti:=i + 1 and S := S\U.

(6) If S = 0, then let u assign i in all other cases and terminate; otherwise, goto

).

First, notice that the algorithm terminates because each time Step (2) is taken,
the set U is nonempty. If this were not the case, then, at Step (2), for every v €
S there would be some v', v € S such thatv =45 v’ and v” >4 v'. Because S is
finite, this implies that there are some states sy, ..., s; € § such that s; =g
$2 >3 853> - >5 81 =¢S; >y 5. By closure under chains, we deduce that
s1 >g s; and s; >4 s, which is impossible.

CLAaM 4. Suppose that P(w) = a, a’ € P(v) and u(a’, w) < u(a, v) for some
w, v € States. Then, w >4 v.

PrROOF. Because of our construction process, a’ € %(v) implies that u(a,
v) = u(a', v).
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Because u(a’, w) < u(a, v), we know that w was chosen before v during the
construction of u(-). We know that (w) # P(v). There are three options: (1)
P(w) = P({v, w}) which implies, by definition, that w >4 v. (2) ?(v) =
% ({v, w}) which implies, by definition, that v >, w. However, in that case, v
would have been chosen before w in the above algorithm. In that case, we would
have had u(a, v) > u(a’, w), which contradicts our assumptions. (3) ?({v, w})
is different from %(w) and %(v). Since we know that P(v) and P(w) are
different, this implies, by definition, that v =g w. Let us consider this possibility.
We know that u(a, v) > u(a’, w). From the algorithm above, we see that this
implies that when w was chosen as part of the set U, v was still unassigned and
was not chosen as part of the set U. Hence, at that time, there was some
unassigned s, s’ € States such thatv =45 s and s’ >, s. Therefore, we have that
s'" =58 =g v =g w.Ifs’ >4 v as well, then from the construction process, we
know that w could not have been chosen at that stage. (Since s’, v satisty the
conditions in Step (2) for not including w in U.) Otherwise, it follows from
closure under chains that ?(s') = %(v). Because #(w) # P(v) we get that
P(s") # P(w). Therefore, by closure under chains we have P(s') >, P(w).
Consequently, w could not have been chosen as part of U at this stage,
contradicting the fact that it was chosen prior to v. In conclusion, we have seen
that only option (1) is consistent with our assumptions, and thus, w >4 v must
hold.

CLAM 5. Suppose that P(w) = a, P(v) = a' and u(a’, w) = u(a, v) for some
w # v € States. Then, w =g v.

PrRoOOF. Because u(a’, w) = u(a, v), we know that both w and v were
chosen at the same stage during the construction of u(-). Hence, neither w >, v
nor v >4 w hold. This can only be the case if ?({w, v}) = {a, a’'}, which
implies w =4 v.

CLAIM 6. By using maximin on the value function obtained above, we obtain
behavior identical to that of the original s-policy.

PrOOF. We prove this claim by induction on the size of the set of possible
worlds |W|. As before, we first notice that the construction process guarantees
this claim will hold whenever |PW(l)| = 1. Next, let Actions = {a, a'} and
suppose that maximin chooses x on W. We will show that for every possible
choice of x, this claim holds.

(1) Suppose that x = a. By definition of maximin, there must be some state
w € W such that for every w’ € W, we have that u(a’, w) < u(a, w'). Because
the claim is valid for singletons, we know that ?(w) = a. Let A, = {s € W |
P(s) = a} and let A,, = {s € W |a' € P(s)}. By Claim 4, we know that
w >4 v for allv € 4,.. Consequently, ¥ ({w, v}) = P(w) = a. Using closure
under unions, we conclude that #(w U A,) = a. Another sequence of
applications of closure under unions implies that ?(w U A, U A,) = a.
However, W =w U A, U A4,.

(2) Ifx = a’, the same argument works.

(3) Suppose x = {a, a’'}. There are two subcases to consider:

(a) There is some w € W such that u(a, w) and u(a’, w) are the minimal
values assigned to an action and a state in W. We notice that because of closure



Axiomatic Treatment of Three Qualitative Decision Criteria 477

under unions, when #(U) = {a, a'}, then for every V' C States, P(U U V) =
PU) or (U U V) = P(V). Hence, for every v € W, eitherw >4 v, v >4 w
or P(w) = P(v); but because of our construction process, v *5 w. We
conclude that w > v for all v € W such that P (w) # P(v). In turn, this means
that in all local states {{w, v} | v € W, P(v) # {a, a’'}} the s-policy P assigns
{a, a’'}. We conclude using closure under unions.

(b) There are a number of distinct states wy, ..., w, € W and actions
ai, ..., a, € Actions such that u(a,, w,) =---= u(a,,, w,,) and for any
other pair (b, s) € Actions X W it is the case that u(a,, w;) < u(b, s). Without
loss of generality, we will assume no state in W is assigned {a, a'} by . We can
always use closure under unions to add these states later on.

We consider two cases: (i) w; U --- U w,, = W in which case we conclude by
invoking Claim 5 (which implies that for any two states w;, w; such that 1 = i,
j=mP{w,; w;}) = {a, a’}) and closure under unions. (i) W\(w; U --- U
w,,) = W' # 0. Let us denote by W, (respectively, W,.) the set of state in W’ in
which % assigns a (respectively, a’). Consider any w;, in which & assigns a and
w € W,.. Using Claim 4, we obtain that ({w, w,;}) = % (w;), and using closure
under union, we obtain that P(w U W,) = P(w;). Hence, w; >4 W,.
Similarly, if %(w;) = a’, then we have w;, >, W,. Because & respects
domination, we have that ?(w, U w; U W, U W,.) = P(w; U w;), which, by
Claim 5, must equal {a, a'}. Using a number of applications of closure under
union, we obtain that (W) = {a, a'} as desired.

This concludes the proof.

PROOF OF THEOREM 3. Let O = Actions X States. Hence, u is a function of
O. We construct the value function u over O using the following algorithm, with
the aid of a Boolean function over O, DONE, and an integer-valued function
over O, LIM. Notice that <y is defined on O.

(1) On all elements of O, initialize « and LIM to 0 and DONE to false
(2) While do’ € O such that DONE(o') = false do

(a) Find some o € O such that
(i) DONE(0) = false ;
(ii) For no other outcome o’ € O such that DONE(0’) = false is it
the case that o’ <g o.

(b) Let u(o) = LIM(0) and DONE(0) = true .
(c) If Jo” is such that DONE(0") = false and o” > o, then let
LIM(0o") = u(o) + 1.

Notice that it could be the case that neither o <4 0’ nor o’ <y o.

First, we must show that the above procedure terminates, that is, that we will
always find an outcome o satisfying all conditions within the WHILE loop. This
follows from our transitivity requirement. Suppose that for every o for which
DONE(o) = false there is some o' for which DONE(0’) = false such that
o' <4 0. Because O is finite, it must be the case that there are some o4, ...,
0,, € O for all of which Done(-) returns false such that 0, <y 0, <g -+ <y
0,, < 0;. Hence, both 0, <4 0,, and 0,, <45 0,;. However, an examination of
the definition of <, reveals that such a case is impossible.
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Next, denote the preference order obtained by using maximin on the values
obtained through the above construction by >"". In order to complete the proof,
it suffices to prove the following claim.

CLAaM 7. > and >"" are identical.

Proor. First, notice that when restricted to single states, this claim is true.
That is, under certainty, both preference relations are identical.

Next, suppose that a >7; a’. This implies that there is some state w € U such
that u(a’, w) is the minimal value obtained by « in {a, a’} X U. We claim that
for everys € A,, = {v € U | a’' >, a} itis the case thata >, a’. Suppose
not. Then a’ >, ,,, a for some such s. In that case, we have a >, a’, a’ > a
and a’ >, a. Hence, (a’', w) >4 (a, s), and by our construction process,
u(a', w) > u(a, s). But this contradicts our initial assumption. Therefore, we
must conclude that a >, ,, a'. Using closure under unions, we get that
a >,ua4,y @'. Since on all states in UM{w U A, .} a is preferred over a’, we
conclude that a > a’ with one more application of closure under unions.

For the other direction, suppose thata *7; a’. If a’ >7; a, then we proceed as
above to show that a’ >, a and, consequently, a *,a’. If a’ *7} a as well, then
there are some w, w' € U (where possibly w = w') such that u(a, w) = u(a’,
w') and these constitute the minimal values u obtains on {a, a’} X U. From our
construction process, it is clear that neither (a, w) >4 (@', w') nor (a’, w') >
(a, w), for otherwise step (2)(c) would have ensured that u(a, w) > u(a’, w')
or u(a, w) < u(a', w'), contrary to our assumption that u(a, w) = u(a’, w').
Therefore, we conclude that w and w' must be different (or else, one of the
above relations must hold). We shall assume that ¢ and a’ are different as well,
since we are not interested in the case a = a’.

We also know that a’ >, a (using our initial remark about the validity of our
claim when restricted to single states and the fact that u(a, w) is minimal) and
thata > . a’ (for the same reasons). It must be the case that eithera >, ., a’
ora’ >, a, since these are total orders. Hence, we conclude that u(a, w) >
u(a', w') or u(a, w) < u(a', w'), contradicting our earlier conclusion that
neither of these hold. This in turn, contradicts the initial assumption that a’ *7; a.

This concludes our proof.
PrOOF OF THEOREM 4. We define u(a, s) as follows:

(1) Mark all o € O unassigned and initialize ¢ to 0.

(2) Choose all unassigned o € O such that there are no other unassigned o',
04, ...,0, € O (fork = 0) such thato =45 0, =4 - =4 0, <g 0.

(3) Let u(o) = c for all o chosen above and mark o assigned.

(4) Increment ¢ by one and goto (2) if there are still o € O that are unassigned.

CLAM 8. The above algorithm terminates.

PrOOF. The algorithm will not terminate only if at some stage there are some
unassigned elements of O, such that for each such unassigned o, there exists

some unassigned o', 04, ..., 0, € O such thato =45 0, =g -+ =4 0, <g 0.
Since O is finite, this implies that there are unassigned o4, ..., 0,, € O such
that 0, *, 0, *, 03 %5 -+ - %, _, 0, *; 04, Where x; € {>,4, =45} and for some

1 =j =k, it is the case that *; = > In particular, based on the closure under



Axiomatic Treatment of Three Qualitative Decision Criteria 479

chains property, there must be some 1 = /, n = k such that both 0, > 0,, and
0, >4 0;, which is impossible.

CLamm 9. If (a,s) =4 (a', s'), then u(a, s) = u(a', s").

PROOF. Suppose (a, s) is not chosen in Step (2) at some iteration. Hence,

there are some other unassigned o', 04, ..., 0, € O such that (a, 5s) =,
0, =g =g 0 <gp o0'.But (a,s) =4 (a’, s") so (a’, s") =4 (a, s) =4
0, =g =40, <gpo0'.Hence, (a’,s") could not have been chosen at Step (2)

at this iteration either.

Cram 10. Suppose that a # a'; then

(1) u(a, s) = u(a', s") and u(a, s) = u(a’', s) implies that a = a';
(2) u(a, s) < u(a',s'") and u(a, s) < u(a', s) implies that a < a’.

ProOOF. First, suppose that s = s'. If the consequence of (1) is false, then
a' <, a holds which would ensure u(a’, s) < u(a, s). For (2), first, notice that
using (1) we conclude that @ = ., a’. Next, if the consequence of (2) does not
hold, we know that a’ = (, a. Therefore, (a, s) =4 (a’, s). Based on Claim 9
we have that u(a, s) = u(a’, s), which contradicts the fact that u(a, s) < u(a’, s).

Now we proceed to prove Claim 10 when s # s’. Notice that from the above
case, we know that u(a, s) = u(a’, s) implies that a =, a’ and u(a, s) < u(a’,
s) implies that a <, a’. We now derive (1) as follows:

Suppose that u(a, s) = u(a’, s') and assume that a #,, ;,, a’. This implies
that ' <y a. If a' =, a, then together with a’ <, a anda =; a’, we
conclude that (a’, s") <y (a, s). Hence, (a’, s’) must have been assigned value
earlier than (a, s), which would mean that u(a, s) > u(a’, s') contradicting our
initial assumption that u(a, s) = u(a’, s'). Hence, we must have that a =<, a’.
However, a =, a’ and a =, a’ implies (1) using closure under under unions.

We derive (2) as follows: from u(a, s) < u(a’, s) we get a <; a’ (based on
the s = s’ case above). If @ <,. a’ holds, we get the desired result using closure
under unions. Otherwise, a’ =, a holds. From (1), we know that a = ., a’
holds as well. If the desired conclusion is false, then ¢’ =, ,, a and conse-
quently, (a, s) =4 (a’, s'). However, based on Claim 9, this implies u(a, s) =
u(a', s"), which contradicts the fact that u(a, s) < u(a’, s').

We must now show that a =f, a’ iffa =y, a’.

For the first direction, suppose that a =<7, a’ and let us show that a =, a’.
Since a =}, a’, we know that there must exist some w € W such that u(a, w) <
u(a’, v) for allv € W. Using Claim 10, we know thata =, ,, a’ forallv € V
that differ from w. Using closure under unions we conclude that a =, a’.

For the other direction, suppose that a =<, a’ and let us show that a =7, a’.
Let w € W be such that for all v € W, it is the case that u(a, w) = u(a, v). We
must show that for all v € W it is also the case that u(a, w) = u(a’, v).
Suppose not. Then, there exists some v € W such that u(a’, v) < u(a, w).
Hence, for every v’ € W, it is the case that u(a’, v) < u(a, v'). Therefore, by
Claim 10, we know that for allv' € W, a' <, . a. Using closure under unions,
we obtain that ¢’ <y, a, contradicting our initial assumption.

This concludes our proof.
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PROOF OF THEOREM 5. In order to prove this theorem, it is sufficient to show
that if there exists a value function under which one criterion represents some
policy P, we can generate another value function under which the other criterion
will generate % as well.

First, notice that minmax regret and competitive ratio are equivalent. One talks
about ratios while the other about differences. Consequently, through the use of
logarithms and exponentiation we can transform a value function for minmax
regret to an equivalent value function for competitive ratio and vice versa. (Given
that S is finite, obtaining an integer valued function is then easy.)

Next, we show that maximin and minmax regret are equivalent. Notice that
maximin and a similar (not so rational) criterion minimax that attempts to
minimize the maximal value of the action are equivalent. We simply need to
multiply utilities by —1. Consequently, it is sufficient to show that minmax regret
and minimax are equivalent. To do this, we have to show that given a regret
matrix, we can generate a value function that has these regret values, and this is
straightforward.

Finally, we wish to provide a formal statement of the relationship between the
properties of closure under union and column duplication discussed in Section 6.
The relationship discussed holds in the context of Milnor’s [1954] discussion of
decision criteria for reasoning under ignorance. Column duplication is a property
that is discussed in the context of decision tables, and we shall attempt to relate
this context to our presentation. We formalize it as follows: First, we assume that
a decision criterion takes as input a finite, two dimensional table whose entries
correspond to state-action pairs (i.e., a standard decision table) and returns one
or more rows of this table, corresponding to the preferred actions. Further, we
must assume that the decision criterion does not care about actions or states
name, but only about the entries in the decision table. Finally, we must assume
that there is an infinite number of states and that for any particular values
assigned to a state with respect to the set of actions (i.e., a column in the decision
table), we have an infinite number of states with such assigned values. Under
these assumptions, we can show:

LEMMA 1. A decision criterion is closed under unions iff it is closed under
disjoint unions and has the column duplication property.

ProoF oF LEMMA 1. Suppose that a decision criterion is closed under unions.
Further, suppose it prefers a to a’ given some state set V. Hence, it prefers a to
a' given (MW\{s'}) U {s}, where s and s’ are as in Definition 18 because the
decision table corresponding to V' and (\{s'}) U {s} are identical. Closure
under unions implies that a is preferred given V' U {s} as well.

Suppose that a decision criterion is closed under disjoint unions and has the
column duplication property. Let U and V" be two sets of states given which a is
preferred to a’. Let W = U N V, and let W’ be a set of states disjoint from U
and V' but identical in terms of their columns. Let V' = (AU) U W'. By closure
under disjoint unions we know that a is preferred to a’ given V' U U.
Furthermore, V' U U =V U U U W', and V' U U contains W. It is immediate
to see that the property of column duplication is identical to the property of
identical column removal. Hence, we know that the decision criterion has the
same preferences given V' U UN\W' = IV U U.
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