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Abstract

The design of social laws for artificial agent societies is a basic approach to coordinating
multi-agent systems. It exposes the spectrum between fully-centralized and fully-decentralized
coordination mechanisms. Useful social laws set constraints on the agents’ activities which allow
them to work individually in a mutually compatible manner. The design of useful social laws is a
problem of considerable importance. In many cases, several useful social laws might be considered,
and we might wish to have some criteria in order to choose among them. In this paper, we present
the notions of minimal and simple social laws, which capture two basic criteria for selecting among
alternative (useful) social laws, and study these criteria in the framework of basic settings, namely
Automated Guided Vehicles and Distributed Computing. We also present results with regard to
computational issues related to minimal and simple social laws, and to the relationship between
these two concepts. Together, the new insights provided here can be used as a basic framework for
the analysis of “good” social laws, and initiate research on the selection among alternative social
laws. 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

The design of an agent which is to operate in a multi-agent environment [5,9,12,13,16]
is quite a different task from the design of an agent which performs its activities in isolation
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from other agents. While in the latter, we are mainly concerned with providing the agent
with the capacity and appropriate knowledge, which are required for deciding on a suitable
course of action, in multi-agent settings we must deal with the coordination of several
agents.

In this research, we consider a particular approach to coordination, referred to as
the artificial social system approach [1,6,38,39,42,44,56,61]. An artificial social system
institutes a social law which the agents shall obey. Intuitively, a social law restricts, off-line,
the actions legally available to the agents, and thus minimizes the chances of an on-line
conflict, and the need to negotiate. Similarly to a code of laws in a human society [50],
an artificial social law regulates the individual behavior of the agents and benefits the
community as a whole. Yet, the agents should still be able to achieve their goals, or any
other specification of the system, and restricting their legal actions to a too wide extent
might leave them with no possible way to do so.

Meeting the system specification is thus asine qua noncondition for accepting a
candidate social law, but is it the ultimate criterion? Should we be satisfied once the law we
designed guarantees this specification (provided every agent conforms to the law)? Clearly,
there might still be quite a diversity of laws with such a characteristic. In order to compare
useful social laws, we will need to define ways to rank these laws, and that is the purpose
of this study. Our aim is to present guidelines for selecting suitable social laws from among
a set of possible (useful) social laws. In order to do so, we define and investigate criteria
that provide a way for ranking alternative social laws.

The first criterion that we consider is called minimality. When considering a potential
social law, we ask ourselves whether this is theminimal set of constraints needed to be
obeyed by the agents in order to guarantee the goal specification. In other words, minimal
social laws attempt to minimize the amount of constraints set on the agents and as such,
captures the notion of maximal individual flexibility.

This criterion is quite general and can be applied to a variety of settings as we
demonstrate by studying the characteristics of different social laws in two domains of
interest. The first domain relates to robotics where we are concerned with many automated
guided vehicles (AGVs) [24,33] moving together on a circular track in order to achieve
given goals. The AGVs must solve a motion planning problem, i.e., find a path leading
them from their current location to another one. Our goal as designers is to guarantee a
collision-free environment for all the vehicles whereas, for an AGV taken individually, this
system-level goal might conflict with its wish to be granted maximal freedom. Minimality
will be shown helpful in guiding the designer in his task of finding an appropriate social
law for this system. The second example is taken from the distributed computing literature.
It is a classical problem that addresses agreement (consensus) among distributed processes
in a communication network [18,19,43]. As with the robotics environment, minimal social
laws are designed and analyzed. After studying minimal social laws in these domains of
interest, we turn our attention to computational studies of minimal social laws, and deal
with the complexity of the automatic synthesis of minimal social laws. We analyze the
problem of relaxing a given social law by removing constraints. We show that this problem
is NP-hard; the proof of this result uncovers connections of this problem with the problem
of planning with incomplete information. In addition, we show that, in a restricted setting,
efficient synthesis of minimal social laws is achievable.
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Although minimality appears to be helpful in designing flexible social laws, it is
not to be seen as an ultimate criterion. Therefore, we consider an alternative criterion,
termed simplicity. Simple laws directly relate to the capabilities the agents need to be
equipped with in order to abide by the law. The simpler the social law, the easier it is for
simple agents to follow it. Simplicity brings forth new computational issues. We formally
define this concept and discuss some of its properties. In addition, we investigate the
computational complexity of designing some specific sub-classes of simple social laws. As
with minimality, this problem is, in general, computationally hard, but can be efficiently
solved in more restricted settings.

Finally, we consider connections between minimality and simplicity. These connections
are useful as they allow us to grasp the intricacies of each concept. In general, these criteria
are loosely related, though again, in some cases, strong connections can be shown to
exist. In particular, we show that a nontrivial efficient law introduced in previous work
on artificial social systems is both simple and minimal.

Looking at criteria for choosing social laws is an important research issue. Such criteria
are likely to provide designers of a system with useful guidance as to which law to
impose on the system. Minimality captures the intuition that while the imposition of social
restrictions is useful, it should be done only to the extent it is necessary. The important point
is not that all systems will necessarily benefit from minimal social laws. In some systems
in which flexibility is of little concern, one might prefer to let the agents with minimal
choice. However, minimality makes us aware of dimensions that should be explored when
attempting to tailor a social law to the needs of a system. In some cases, other dimensions,
like simplicity may have to be explored as well, and sometimes might be preferred. Thus,
the main contribution of this paper is to provide a framework for engineering social laws in
systems (taking into account various design principles), where minimality and simplicity
play a central role.

This paper is structured as follows. In Section 2 we present the notion ofminimalsocial
laws, as a basic criterion for choosing among useful social laws. In Section 3 we apply
this concept in the context of two basic domains: automated guided vehicles moving in
a ring environment, and consensus problems in distributed systems (these two domains
demonstrate the generality of the approach across different basic settings). In Section 4 we
present a computational study of minimal social laws. We show that a basic problem in the
design of minimal social laws is intractable. However, in Section 5 we point to a setting
where a polynomial time algorithm for the synthesis of such a law is presented. In Section 6
we present the notion ofsimplesocial laws, as a second basic criterion for choosing among
social laws, and in Section 7 we study some of its computational properties. In Section 8 we
present and discuss several results on the integration of minimality and simplicity. Section 9
concludes with an additional discussion of related work and of the contributions of this
paper.

2. Minimal social laws

A problem that we believe to be essential for the design of artificial social systems is
the search for an optimal law, according to some measure of optimality. With this purpose
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in mind, we shall now present and investigate the notion of minimal social laws. This
section presents a general model where this concept/criterion can be studied. In Section 3
we illustrate the use of this criterion in two domains of interest. Sections 4 and 5 consider
computational and algorithmic issues related to the design of minimal social laws.

2.1. A design criterion for optimality

A central issue in the design of social laws which has not been investigated yet is the
design of optimal social laws, according to some measure of optimality. Given a system of
agents and a specification, the job of the designer is to find an implementation consistent
with this specification. A possible way to come up with a suitable implementation could be
to identify a strategy profile such that, given that each agent acts according to the strategy
assigned to it in this profile, the specification is satisfied. Then, it would be possible to
enforce this behavior by instituting the appropriate behavior as the law of the system [37,
38]. Clearly, this law would be consistent with the system specification (according to which
it has been designed), since it would force each agent to use the strategy prescribed to it in
the strategy profile, while this strategy profile has been chosen to satisfy the specification
of the system. Most often, other useful social laws will exist, and we will be faced with
the problem of comparing the different laws. How should we do so? When could we say
that we have found an optimal law, and under which criterion? Following the literature
on mechanism design in economics [21], a law could be considered optimal if it brings
maximal utility to the designer of the system. Although legitimate, this definition does
not capture the fact that the purpose of social laws is to provide a flexible framework
for a system to evolve in. This will therefore motivate another notion of optimality, that
we call minimality, and which we would like to relate to the impact social laws have on
the dynamics of the system (and its components). Optimality would then be seen as a
maximization of the agents’ ability to adapt to unpredictable changes in the environment,
and in their goals, subject to the requirement that they be able to obtain their original
goals.

It is first necessary to understand what is meant by comparing two laws. Informally,
given two different useful lawsl1 and l2, we say thatl2 is smaller thanl1 if the set
of behaviors induced by strategies consistent withl1 is included in the set of behaviors
induced by strategies consistent withl2. In other words, if we regard a lawl as a set of
restrictions,l2 setslessrestrictions thanl1. Intuitively, a smaller law is a law that rules out
less behaviors consistent with the agents’ goals. We relate the size of a law to optimality
in the following way: A useful social lawl∗ is minimal (and optimal) for some system
specification, if and only if, for any other useful social lawl, l is not smaller (as defined
above) thanl∗.

A minimal law will grant the agents more freedom in the process of choosing their
behavior while ensuring that they conform to the system specification. Systems with
smaller social laws are therefore likely to be more robust to changes in the environment
specification or in the capabilities of the agents. A small social law might also be more
easily enforced, as being less restrictive, especially in environments where enforcement of
the law need to rely also on rationality constraints. Note also that minimal laws need not
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be unique, and selecting one law among several minimal social laws might require some
other exogenous criterion (either quantitative or qualitative).

2.2. Formal definitions

The following definitions formulate the notions of social laws and minimality in the
framework of a general strategic model. For ease of exposition, we present our definitions
for environment consisting of two agents. Extension to the case ofn agents (n> 2) follows
easily.2

Definition 2.1. An environmentE is a tuple〈N,S1, S2〉, whereN = {1,2} is a set of
agents andSi is a set of strategies available to agenti.

Given an environment, the agents are assigned goals that they must obtain by devising
appropriate strategies from the set of possible strategies available to them. In addition there
are some system-level goals that should always be guaranteed.

Definition 2.2. In an environmentE = 〈N,S1, S2〉 a goalg is a subset of the Cartesian
product over the agents’ strategy spaces, i.e.,g ⊆ S1× S2.

The above definition captures goals in very general terms. Roughly speaking, a goal is
associated with the set of joint strategies in which it is indeed obtained. Notice that this
broad definition of goals enables us to refer to complex goals, e.g., if the strategies are
temporal policies then goals would be temporal as well,

We distinguish between several sets of goals. Let us denote byGi the set ofliveness
goals for agenti. These are goals that we wish to enable agenti to obtain. Naturally, at
a given initial state the agent may wish to obtain a particular goal and another goal may
be irrelevant.3 In addition, there is a setGsafeof safety goals. These are goals that should
always be obtained. The formal definition of goal achievement for liveness and safety goals
is given below.

The main purpose of (useful) social laws is to set regulations that ensure safety and
enable the agents to obtain their liveness goals. Given an environment and a goal for
agenti, it is not certain that this agent has a strategy such that, independently of the strategy
profile chosen by his fellow agents, he will achieve his goals. The job of the designer is
to devise a social law that restricts the agents’ activities. Ensuring that each agent in the
resulting system achieves his goals will qualify this social law as useful.

2 Extension to the case ofn agents is straightforward. In fact, then-agent case can be regarded as a 2-agent
problem, where for each agenti, the “other” agent is the group of then−1 remaining agents. The set of strategies
of this group is the cartesian product of the strategy space of the individual agents in the group, and the goal set
of the group is the union of the individual goal sets. This is similar to the use in game theory of the notations−i
to represent the strategies of all the players excepti.

3 The initial state is implicit in the agent’s strategy in our general model. It will be treated more specifically in
our more concrete applications and computational study.
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Definition 2.3. Given an environment〈N,S1, S2〉, and given the sets of goalsG1,G2, and
Gsafe, a social law is a set of restrictionsSL= 〈S1, S2〉 such thatS1⊆ S1 andS2⊆ S2. SL
is usefulif:

(1) for every goalg1i ∈ G1 there existss1i ∈ S1 \ S1 such that for alls2 ∈ S2 \ S2 we
have(s1i , s2) ∈ g1i .

(2) for every goalg2i ∈ G2 there existss2i ∈ S2 \ S2 such that for alls1 ∈ S1 \ S1 we
have(s1, s2i ) ∈ g2i .

(3) for everygj ∈Gsafeand for alls1 ∈ S1 \ S1, s2 ∈ S2 \ S2, we have that(s1, s2) ∈ gj .

Following a social law corresponds to choosing strategies within the set of lawful
behaviors allowed by the law. It should be pointed out that the mapping between state
and action might not always be available, for example due to failures in sensors or lack of
access to the state. As a consequence an agent might break the law and the specification
cannot be guaranteed. This is an important issue that we intend to study in subsequent
work.

As we have discussed before, social laws differ in their properties, and some (useful)
social laws are more stringent than others. Our approach to the selection among social laws
is to prefer those that satisfy the safety and liveness conditions with minimal constraints.
Formally,

Definition 2.4. Consider an environment with a specification of liveness and safety goals.
A useful social lawSL = 〈S1, S2〉 is minimal if there is no other useful social law
SL′ = 〈S′1, S′2〉 that satisfiesS′i ⊆ Si for all i.

In the sequel we will refer, unless stated otherwise, to minimal useful social laws as
minimal social laws.

Minimal social laws give each agent maximal freedom in changing his behavior (this
change might be caused by changes in the agent’s capabilities, change of goals, etc.).
Needless to say, sometimes, changes in the system and new requirements may require
a re-design of the social law. The role of minimal social laws is to serve as a basic
optimization tool in between these transitions. Given the importance of this type of
flexibility, and the need to study the effects of replacing simple protocol design by the
design of minimal social laws, we now turn to a study of minimal social laws in two basic
domains.

3. Minimal social laws for domains of interest

In the previous section we presented an abstract and general notion of minimal social
laws. In the next section we will present a more concrete formal definition in the context of
a computational model. In order to make the ideas more concrete, we consider in this
section two domains of interest for which we design (minimal) social laws. The first
domain is drawn from robotics, and the second from the distributed computing literature.
We believe that these domains are quite representative of the use of social laws in the
context of physical and software agents, respectively.
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3.1. A case study: AGVs in a circular automated assembly line

3.1.1. The domain
In a single-robot automated assembly line, a robot is programmed to perform some

activity which will lead it to a goal state, i.e., a situation where its goal has been fulfilled.
When several agents are acting together, interactions between the agents’ actions may
tamper with normal operation. Let us consider for example a domain consisting of a simple
automated assembly line, wherem robots can move betweenn stations in a circular fashion
(26 m 6 n). This domain is represented by a connected undirected graphG = (V ,E)
where|V | = n, |E| = n and for allv ∈ V,deg(v) = 2 (where deg(v) is the degree of the
vertexv), i.e., the domain is represented by a graph withn vertices and a ring topology.
Each node in the ring represents a station. In our simple model, a robot can move at
time t (we will assume that time steps are discrete and that time is infinite) from the
station it stands at to one of its two neighbors, or stay immobile. All the robots move
at the same speed, and a robot who left a station at timet will reach one of the adjacent
stations at timet + 1. In a case where several robots are in the same station then we have
a collision. Finally, we will assume knowledge of the immediate environment, in the sense
that each robot can observe the state (occupied or free) of the two stations following it
(in clockwise order), and the two stations preceding it (in clockwise order). The system
may be initialized in any situation, as long as no pair of robots lie on the same coordinate.
In order to simplify the discussion, when referring to the directions of movement we will
use the terms ‘clockwise’ and ‘forward’ interchangeably. Similarly, we will use the terms
‘anti-clockwise’ and ‘backwards’ interchangeably.

3.1.2. The motion planning problem
The specification of the system consists of liveness and safety goals. A liveness goal

specifies a particular station to be reached. We will assume that any of the stations can be
the target of such a goal. The safety goal requires that collisions be avoided. We will now
consider a simple social law for obtaining the above-mentioned specification.

Traffic Law 1. Each robot is required to move constantly clockwise, from one station to
the other along the ring.

It is easy to show that the following holds:

Proposition 3.1. Traffic Law1 guarantees that no collision will occur and that each robot
will reach any location it might want to get to inO(n) steps.

Traffic Law 1 is attractive as it clearly defines what to do in each situation. However, it
might be rather constraining. Traffic Law 1 does not leave any choice to the agent when
selecting its actions. His behavior resolves to that of a pure-reflex agent. Notice that from
a design perspective it is not enough to require usefulness (that is, meeting the system
requirements) from a law, since a useful law might implement the specification in a too
much constraining way. There is no need to put a particular restriction on an agent, if this
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restriction does not interfere with goal achievement by other agents or might lead to unsafe
situations. Hence, we need to go further and examine the notion of a minimal law.

Note that our study fits nicely to the general model presented in the previous section.
Strategies are built using the three basic actions a robot can take at each station
(move clockwise, anti-clockwise, or rest). The state of an agent consists of its recent
location/observation and its history, and a strategy for an agent will be a function from
its state to action. Goals involve getting from one station to another station on the ring (a
liveness goal) as well as avoiding collisions when moving around (a safety goal).

We will be interested in relating minimal laws to optimal behavior. It is clear that we
must trade-off between the need to rule out certain kinds of behaviors in order to avoid
collisions, and the need to restrict our agents as little as possible leaving them with enough
freedom to achieve their goals. TheGolden Mean Problemin artificial social systems [42]
states just that: find a social law that restricts the possible behaviors of the various agents
enough to serve all the agents in a good manner. The minimal social law problem on
the other hand focuses on finding a social law driven by the specification of the system,
but whose dependency on this specification is as loose as possible. The two problems are
clearly related. We emphasize that the less we restrict our agents, the more behaviors we
leave available, allowing a less stringent and deterministic framework for them to evolve in.
Above all, we achieve a level of flexibility, especially in settings with imperfect information
where we can not rely on the (weak) assurance provided by the analysis of a situation
whose basic components (e.g., the utility values) are possibly erroneous, or evolve with
time.

In our simple automated assembly model, we can improve the useful law by relaxing
some of the constraints imposed on the behavior of the robots. Note that this is made
possible by using knowledge (in that case, knowledge of the surroundings) available to the
robot by the time it makes its decision.

Traffic Law 2.
(1) Staying immobile is forbidden if the station which can be reached by a single anti-

clockwise movement is occupied.
(2) Moving anti-clockwise is allowed only if the two stations which can be reached by

moving anti-clockwisetwice are free.

Proposition 3.2. Traffic Law2 is a minimal(and useful) social law.

Proof. Consider the possible situations that occur in the system and the response of the
robots when following the law. A robotx might collide with a roboty which is at a
distance of one station in front of it, if and only ifx rests or moves forward whiley
moves backwards, or ifx moves forward whiley rests or moves backwards. However,
since in this casey must move forward, we get that collisions will be prevented. Ify

is in a distance of two stations in front ofx then no collision will occur since in this
casey can not move backwards. This will guarantee safe behaviors. Since the law allows
our robot to always move forward, it can always achieve its liveness goals. Suppose that
Traffic Law 2 is not minimal. Therefore, there exists a smaller law, Traffic Law 3, which
allows additional behaviors and still meets the system specification. For Traffic Law 3 to
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be smaller than Traffic Law 2, it should allow moving backwards when a robot stands two
stations behind (in the anti-clockwise direction), or to rest/move backwards when a robot
stands one station behind. This implies that in order to be useful Traffic Law 3 should
restrict the robots’ behavior when moving clockwise, otherwise collisions could occur. But
then, it will restrict the whole system at least as much as Traffic Law 2, thus Traffic Law 3
is not smaller than Traffic Law 2.2
3.2. Consensus in a synchronous distributed environment

We now take a look at another basic domain where minimal social laws may play
a significant role. We consider a variant of a classical distributed systems problem, the
consensus problem. Other variants of it can be treated similarly. This case study holds an
additional interest as it illustrates how roles (in this case, the roles of general and lieutenant)
can be assigned to agents and be made an integral part of the social law.

3.2.1. The domain
We assume that the distributed system consists ofn processes, interconnected by

communication hardware, which exchange information by broadcasting one-bit messages.
Naturally, an agent may also refrain from broadcasting a message at a particular point.
Message passing is assumed to be synchronous (see [59]). We use a pulse model to simulate
the synchrony of the system (see [54] for the description of this model in the context
of distributed election algorithms). In a pulse model, time is partitioned into intervals of
fixed length (termed pulses), such that at each pulse a process receives the messages sent
in the previous pulse, performs internal computations, and sends new messages. Besides
sending and receiving messages, a process can trigger internal events. The set of internal
events of a process always includes a decide event, defined as follows. Each process has
an internaldecisionvariable, and we say that a process decides on a valuea, a ∈ {0,1},
when it sets its decision variable toa. The system is initially in an initial configuration,
which is completely determined by the values of the decision variables of the processes.
We associate the initial state of each processp with the initial value of its decision
variable.

In the sequel, we will assume that the processes communicate by broadcasting messages,
and we will use the term ‘broadcast’ to represent a multiple-send event consisting ofn

individual and simultaneous send events with the same sources, the same messagem, and
different destinations (note that ifi broadcasts a message then it will receive it as well).
The behaviors of the system are further restricted to those executions where no process
ever fails.

3.2.2. The consensus problem
Given a time (i.e., pulse number)T > 1, the consensus problem requires that the decision

variables of all agents at timeT will be identical. This property is the classicalagreement
requirement [18]. This requirement is usually augmented with anontriviality requirement
that rules out trivial decision rules, such as “always decide 0”. We will use the following
nontriviality requirements:
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(1) At least one message should be sent until timeT .
(2) Consider the first round where a message has been sent. Then, if the initial state of

each of the processes which sent a message on that round isv, then at timeT the
value of the decision variables of all the processes should bev.

This requirement somewhat resembles the one used in Byzantine agreements [18,43]. The
intuition behind it is that the values of the processes which have sent their messages first
should be weighted more heavily (and in our case should be given full and exclusive
priority), since these processes have expressed an acute interest in the decision process
by sending their values first whereas the other processes have not. In any case, other
nontriviality conditions can be treated similarly.

Consensus problems arise naturally in situations where distributed entities must take
a decision whose impact depends on the decision taken by the other “participants”. For
example, firms in an oligopoly (organized in a cartel) must coordinate their production
level in order to keep profits high [30]. Failure to achieve consensus might have drastic
consequences (price war). Likewise, in the context of distributed databases, committing
modifications made to local replica and updating the main database rely on a consensus
phase (Two-Phase Commit protocol [23,31]) between the distributed components of the
database.

In terms of the model described in Section 2, we have that a strategy in our setting is a
function from a process history (including its initial state, and its history of send/receive
events) to actions (messages to be sent and decision to be made). It is straightforward to
define agreement and nontriviality as safety goals. Notice that there is no need to require
the obvious liveness goal that tells each agent to decide at the end, since we assumed a
decision is made by assigning a value to the decision variable.

Given the above setting we are interested in finding social laws that will satisfy the
system specification, will be flexible, and will allow the agents maximal freedom in
choosing their actions.

Consensus Law 1.Each process is assigned a label “general” or “lieutenant”, such that
exactly one process is assigned the label “general”. The general is required to decide on a
valuea and to broadcast this value in the first round. The other agents should refrain from
sending a message in the first round, and upon receiving the value from the general they
should decide on this value. No changes of decision are allowed in the system from this
point on.

It is easy to show that if all processes abide by the above law, then agreement and
nontriviality are satisfied. Thus, Consensus Law 1 is useful. This law however is in fact
a very restricting protocol. In many cases agents may wish to take various decisions based
on various messages received from other agents. In particular, assigning a value to the
decision variable may reflect the performance of a particular type of action. The consensus
problem has required that at timeT the actions to be performed will be identical. However
if an agent (or a subset of the agents) may wish to take various decisions (based perhaps
on messages sent by other agents) in the meantime, there is no need to constrain it in
this regard. Moreover, it seems that Consensus Law 1 does not capture the “essence of
the specification”. The agreement and nontriviality requirements suggest that we are not
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only seeking agreement, but also that the value agreed upon must be mostly influenced
by the agents “who care the most about the decision” (i.e., submit messages first), and
our protocol does not capture this situation. Notice that these observations arenot part of
the specification; if they were, Consensus Law 1 would become non-useful. This leads
yet again to the problem of designing a minimal social law for the related setting, which
would enforce the specification with minimal restrictions and capture (at least in a sense)
its “essence” in an accurate way.

Consensus Law 2.Each process is assigned a label “general” or “lieutenant”, such that
exactly one process is assigned the label “general”. If a process sends a message before
it has received any message, then it must send the value of its initial state as the content
of its message. If at timeT − 1 the general has not received any message then it should
broadcast the initial value of its decision variable. By timeT all agents set their decision
variable to the value of the majority of the values received in the first pulse a receive event
occurred(where0 is the default value for the case of a tie). In case their decision variable
already holds this value, they can refrain from setting it.

Proposition 3.3. Consensus Law2 is a minimal(useful) social law for the consensus
problem.

Proof. In the last round the decision variable of each process is set to the majority
of the values received in the first pulse (say, pulsei) a receive event occurred in
this process. Given the failure-free communication media all the processes will receive
the corresponding message simultaneously. These observations imply that agreement is
satisfied. The fact that the processes are required at first to send their initial values, the
fact that the majority of the first submitted values is taken at the end, and the fact that
if no message has been received until timeT − 1 then the general must send a message,
guarantee that nontriviality is obtained. In order to prove that the law is minimal, consider
another law, Consensus Law 3, which is still useful but allow additional strategies. This law
cannot allow the general to refrain from sending a message at roundT − 1 (if no message
has been received by that time), since this may lead (if no additional constraints are put) to
a situation where no messages are sent. Similarly, this law cannot allow a process to send a
message that is different from its initial value before receiving any message, since this may
prevent nontriviality (if no messages are sent in the corresponding round, and no additional
constraints are put). Note that the fact we used a majority decision criterion is in no way
restricting. Other criteria might do just as well, provided they generate a common decision
value for the processes in the system, but not better. Indeed, a decision criterion is a
function that maps inputs (messages received in the pulses up toT ) to a single output 0 or 1.
For a decision rule to be different from the majority principle, it will necessarily have
to rule out, for at least one input, a behavior which matches the majority rule. Thus, a
social law based on it will not be smaller that Consensus Law 2. Altogether, we get that
Consensus Law 3 cannot allow more strategies and Consensus Law 2 is minimal.2

Looking for minimal social laws is therefore helpful in evaluating alternative social laws
and choosing among them. It is by no means the only way to do so. We now examine a



72 D. Fitoussi, M. Tennenholtz / Artificial Intelligence 119 (2000) 61–101

more restricted definition of minimality, minimally preserving social laws, and study the
relationship between minimality as presented before and minimally preserving social laws.
In Sections 6 and 7 we will consider another approach, based on a notion of simplicity,
which is not related to minimal constraints.

3.3. Minimally preserving social laws

We now consider a refinement of the definition of minimal social laws given previously.
By doing so, we wish to gain a deeper insight into the concept, as well as encourage
discussion of the definition itself.

Let us consider an environment where a social law has been set. We assume that the
social law is useful, i.e., there exists a legal strategy (that will be called a useful strategy),
for each agent, which guarantees the realization of each agent’s goal for any strategy chosen
by the other agent (provided it is allowed by the law). Given a social law, we denote the
set of useful strategies for agenti, induced by the law, bySui . Note that in general there
could be more than one strategy inSui and the cardinality of this set for differenti need
not be the same (albeit always at least one). We incorporate a condition overSui into the
definition of minimal social laws in the following way: given two different social lawsσ
andσ ′, σ ≺ σ ′ if S′i (σ ′)⊆ Si(σ ), whereSi(σ ) (respectivelyS′i (σ ′)) is the set of possible
strategies induced for agenti by σ (respectivelyσ ′), for all i, andS′ui is preserved for all
i (i.e., any useful strategy allowed byσ ′ remains useful whenσ is applied to the system).
Formally:

Definition 3.4. Given an environment〈N,S1, S2〉, and given the sets of goalsG1,G2, and
Gsafe a social lawΣ = (Σ1,Σ2) with sets{Sui (Σ)}i∈N of useful strategies is minimally
preserving if there is no other useful social lawσ = (σ1, σ2) with sets of useful strategies
{Sui (σ )}i such thatσi ⊆Σi andSui (Σ)⊆ Sui (σj ) for all i.

The same advantages that applied to minimality motivate the study of minimally
preserving social laws. However, instead of expanding the set of legal strategies without
other discrimination than keeping the social law useful, minimally preserving social laws
emphasize the strategies we are most interested in, the useful ones. Standard minimality
makes each agent immune to changes in the goal structure or capacities of other agents, and
provides each agent with a larger choice of strategies from which to derive an appropriate
strategy for the new configuration. Minimally preserving laws, on the other hand, strives to
provide the agents with several alternatives with which each agent can achieve its original
goal and also new ones. Minimally preserving social laws are conservative: a particular
subset of the legal strategies (namely the useful strategies) is given special status. Very
often, this set corresponds to some basic behaviors that we want our system to display. For
example, in the AGVs case study above, one such basic behavior is given by Traffic Law 1
and corresponds to the robots moving constantly clockwise. We wish to keep this behavior
even when we eventually get to allow many more strategies. Another observation which
justifies the study of minimally preserving social laws relates to the issue of designing
efficient plans. Expanding the set of strategies is no panacea, and should be done carefully,
as we usually introduce more complex (and less efficient) behaviors. By considering
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minimally preserving laws, the likely-to-be-simpler useful strategies in a stringent law
will remain useful in any subsequent extension of the law. For instance, in the context
of the AGVs referred to above, the behavior of moving constantly clockwise is one of the
simplest available, and should be preserved. We will return to the issue of simplicity in the
following sections, when dealing with simple social laws.

The following observation makes the relationship between the two definitions of
minimality given above more precise. In particular, we observe that minimally preserving
social laws are not necessarily minimal.

Proposition 3.5. Minimally preserving social law and minimal social laws are not
equivalent.

(In the proof, we refer to a minimal social law as an MSL and to a minimally preserving
social law as an MPSL.)

Proof. It is easy to see that MSLs are necessarily MPSLs: ifσ is an MSL, then no
extension ofσ (in the sense defined above), is an MSL, and therefore no extension of it is an
MPSL. Therefore,σ is an MPSL. The converse is not true: consider a two-agent encounter
where each agent has two strategiesa andb, and the joint strategies(a, a), (a, b), (b, b) all
lead to a state where each agent’s goal is achieved whereas the joint strategy(b, a) leads
each of them to a forbidden state. A possible useful social law might authorize strategya

to agent 1 and botha andb to agent 2. Notice that in this case, strategya for agent 1 and
strategya for agent 2 are useful strategies (as is strategyb for agent 2). This law is useful,
minimally preserving (as addingb to agent 1 would not preserve the useful strategya of
agent 2), but is not minimal (addingb to agent 1 still leaves each agent with one useful
strategy, namely(a, b)). 2

Having defined the concept of minimality and illustrated its applicability in domains of
interest, we now explore computational issues related to the design of minimal social laws.

4. A computational study of minimality

This section, as well as the following one, departs from the very general model
presented above and presents a study of minimal social laws in a computational model.
This model is useful to address computational issues related to the automatic design of
minimal social laws. The process ultimately leads to a characterization of minimality in
computational systems and exposes the more abstract description of the previous sections
in computational terms, bridging the gap between the theory of minimality and its use in
system design. We wish to emphasize that we see the design of social laws, and minimal
social laws in particular, as an off-line activity. This implies that the automatic synthesis
of such social laws, its considerable importance notwithstanding, is not the ultimate way
to design them. The concept of minimality is already interesting when designing specific
systems such as those discussed in the previous sections. Nevertheless, a computational
study of minimal social laws can still shed light on their design and on their connections
with related concepts and issues.
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Definition 4.1. A (two-agent)systemis a tupleS = 〈L1,L2,C0,A,A1,A2, τ 〉 where
• Li is a finite set of time-stamped states for agenti (i.e., a combination(s, t) of a state

and a positive integer),
• C0⊆ Lt=0

1 ×Lt=0
2 is a set of initial configurations drawn from the agents’ states with

time-stampt = 0—we refer toL1×L2 as the set of possible system configurations,
• A is a finite set of actions,
• Ai is a function fromLi to 2A that determines the actions that are physically possible

for agenti (as a function of its state),
• τ is a (partial) transition functionτ :L1×L2×A×A→ L1×L2 such that if a state
l in a configurationc is mapped tol′ in configurationc′ under the functionτ then the
time-stamp associated withl and the time-stamp associated withl′ are consecutive
integers (i.e., a joint action will lead an agent from a state with time-stampt to a state
with time-stampt + 1).

In this definition, two states with different time-stamps, but otherwise identical, will
appear as two different states. However, in general, we will assume a finite upper bound T
on the number of steps necessary to reach one’s goal. Therefore, for all practical purposes,
the set of statesLi can be considered to be finite.

Definition 4.2. A plan for agenti is a total function fromLi to A, such that the action
prescribed to agenti by the plan at any states ∈ Li is inAi(s).

An execution of a planP by agenti is a sequences0, s1, . . . , sk of states inLi , where
s0 is the state of agenti in c0, c0 ∈ C0, and where thesi ’s are the states visited by agenti
when it follows its plan and the other agent follows one of its possible plans. An execution
of a joint plan (consisting of one plan for each agent) is the sequence of configurations
reached by following it (by both agents respectively).

Definition 4.3. A liveness goal for agenti is associated with a subset ofLi .

Intuitively, a liveness goal will be fulfilled if one of the states in the corresponding set is
reached (i.e., if the agent passes through this state).

Definition 4.4. A safetygoal is associated with a subset ofL1×L2.

A safety goalgsafe is fulfilled if the system reachesonlyconfigurations ingsafe.
A plan for agenti is said toguaranteea liveness goalsgoal if all of its executions include

at least one states ∈ sgoal (not necessarily the same for each execution), and the length
of the prefix up to this state in each execution is polynomially bounded (in the size of the
system, that we take to be|A|+maxi |Li |). A system is said to guarantee a safety goalgsafe

if there does not exist an execution of a joint plan in the system that includes configurations
which are not ingsafe.
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4.1. Social laws and minimality

A social lawσ is a set of functions, one for each agent, that restrict the plans available
to the agents. Formally,

Definition 4.5. Given a system S, a social lawσ in S consists of functions〈A′1,A′2〉, for
agents 1 and 2 respectively, whereA′i is a function fromLi to 2A that defines the subset
of actions prohibited for agenti in each state (A′i(s) ⊆ Ai(s) for every agenti and state
s ∈ Li ).

A social law σ and a systemS induce asocial systemSσ similar to S, where the
Ai functions are altered based on the functionsA′i (i.e., in the states only actions in
Ai(s) \A′i (s) are allowed).

Definition 4.6. A social lawσ in S is useful if the system guarantees each safety goal
(regardless of the law-abiding strategies chosen by the agents), and if, for every liveness
goalsgoal of agenti, there exists a planP in Sσ that guaranteessgoal.

Consider the setΣS of useful social laws for the systemS. We define a partial order≺
on ΣS : given two social lawsσ1 = 〈Aσ1

1 ,A
σ1
2 〉 andσ2 = 〈Aσ2

1 ,A
σ2
2 〉 in ΣS , we say that

σ1≺ σ2 if Aσ1
i (s)⊆Aσ2

i (s) for all i and alls ∈Li , with at least one strict inclusion for one
s andi.

Definition 4.7. A minimal social lawσi is a useful social law such that there is no useful
social lawσj in ΣS , σj 6= σi , that satisfiesσj ≺ σi .

Notice that a social law may fail to exist. However, if a social law exists, a minimal
social law will exist as well.

4.2. Automatic synthesis of minimal social laws

Roughly speaking, the algorithm we have in mind when searching for minimal social
laws starts from a useful social law and decrements the set of constraints. Hence, the basic
question we are faced with is the following. Given a system, an appropriate useful social
law, and a pair(s, a) of a states and an actiona, wherea is prohibited in states for
agenti (by the given law), can we allowi to take actiona in s and still remain with a
useful social law? The answer to this question reveals an interesting connection between
problems of planning with incomplete information and the design of minimal social laws.
The following theorem shows that this question, which addresses a most basic problem in
the construction of minimal social laws, is NP-hard.

Theorem 4.1. Given a systemS, and a useful social lawσ that prohibits actiona in state
s of an agenti, deciding whether by allowinga in s we get a useful social law, isNP-hard.

Proof. We prove the result by a reduction from Planning while Learning [52]. In Planning
while Learning (PWL), we are given two automata, one for the agent and one for what
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we call the environment. The agent has a setQ of observable states, a set of possible
actionsA, an initial stateq0 ∈ Q and an actual transition function. The agent does not
know the actual transition function of the environment but knows that it is one ofs possible
behaviors. By performing actions, the agent can gain knowledge about the actual behavior
of the environment. The problem that we face is to design a plan for the agent to obtain
his goal for any environment behavior (taking into account the fact that by acting and
getting feedback, the agent can learn about the structure of the environment). Suppose
we are given a Planning while Learning systemS which consists of two automata, one
for the agent and one for the environment (see [52]). We now construct in polynomial
time a two-agent system. In this two-agent system, the set of states for agent 1 includes a
single initial states1

0 in which the agent can choose only one actiona. The second agent
starts in states2

0 where two actionsx andd are available. The transition function is as
follows: If agent 2 takes actionx in s2

0 then it reaches a stategoal2 where her goal is
achieved, irrespective of the action chosen by her companion. Agent 1 will also reach his
goalgoal1 by doinga in s1

0, provided agent 2 did not take actiond concurrently. In a case
the joint action is(a, d), agent 1 moves to a stateq0 from which the specification of the
agent’s automaton (states and transition function) replicate the agent’s automaton of the
Planning while Learning systemS. Similarly, agent 2, by takingd , reaches a state from
which she chooses amongs actions corresponding to thes behaviors of the environment
in the Planning while Learning systemS, all of them leading indistinctly to her goalgoal2.
Initially, a useful social law forbids actiond , and leaves all other actions legal. We show
that social law which corresponds to no restrictions for both agents (i.e., extending the
previous law by allowingd at s2

0) is useful if and only if there exists a satisfactory plan for
the agent in the PWL system. Clearly, if there exists a satisfactory plan for the agent (say
Ps ), then the plan where agent 1, in the derived two-agent system, choosesa and then, if
agent 2 chosed conforms toPs , leads agent 1 to his goal no matter how agent 2 behaves
(if agent 2 chosea, agent 1 reaches his goal immediately as specified above). Therefore, in
this case, addingd keeps the system useful. Likewise, if addingd keeps the system useful,
there must exist a plan for agent 1 that guarantees reaching his goal (from the definition of
usefulness). And then, the sub-plan of this plan which starts inq0, represents a satisfactory
plan for the PWL system.2

5. The minimal social law algorithm (MSLA)

The above result leads us to consider a special class of systems. In this section
we consider the case where an agent’s basic goal is to follow a predefined planPi .
Nevertheless, this goal or the agents’ capabilities may change and therefore we do not
wish to restrict the agents by requesting them to follow this and only this plan. We show
that an efficient incremental algorithm for the computation of minimal social laws exists
for this class of systems.

Consider a two-agent systemS with a single initial configuration (i.e.,C0 = {c0}).
Consider a pair of plansP1 andP2, wherePi is a plan for agenti. Let ti be a bound
on the number of steps ofPi . Let (si0, s

i
1, . . . , s

i
ti
) be the execution of the joint plan

(P1,P2) projected on the states of agenti. We will associate this execution with the goal of
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agenti. In the AGVs example, this sequence can be associated with a sequence of stations
l0, l1, l2, . . . , whereli+1 and li are neighboring stations. Basically, this kind of goals is
quite typical in systems where there are given protocols to follow, and where the role of
a social system is to allow maximal freedom by relaxing unnecessary constraints. Notice
that in this setting, agents are required to fulfill only their liveness goal and there is no
safety goal. However a variant of safety is implicit in our definition of liveness goal, since
an agent not following his state sequence will never be able to fulfill his liveness goal. Yet
this is not properly speaking a safety goal. We do not wish to rule out the possibility that
the agent might switch to a different goal, and thus we should let an agent depart from his
goal if he wants to.

5.1. The MSLA algorithm

(1) Let sik denote thekth state to be visited in the execution that corresponds to the
original goal. Letsi0 denote the initial state of agenti. Let (ai1, . . . , a

i
ti
) be the

sequence of actions executed by agenti in the corresponding plan (Pi ).
(2) Initialization step: letk = 0, and letA′i (s) = ∅ for all i and s (intuitively, A′i (s)

represents the set of forbidden actions ats).
(3) LetBjk be the set of reachable states at stepk for agentj when agent 3− j follows

his (original/basic) plan. Initially,B1
0 contains the initial state of agent 1 inc0, B2

0
contains the initial state of agent 2 inc0, and all the otherBjk ’s are empty sets.

(4) For each states ∈ B1
k and for each actiona ∈ A1(s) \ A′1(s), if τ (s, s2

k , a, a
2
k) =

(s1, s2
k+1), wheres1 ∈L1, then adds1 to B1

k+1. Otherwise, adda toA′1(s).
(5) Incrementk by one. Whilek < ti , go to (4).
(6) Execute steps (4)–(5) again, switching the indexes for the agents.
(7) Output the social law whose components are the functionsA′1,A′2.

Proposition 5.1. Given a systemS, and a goal that is a projection of a given joint plan,
MSLA outputs a minimal social law for the systemS in polynomial time.

Proof. We first prove that the algorithm runs in polynomial time. The initialization takes
O(max(Li)) iterations. At the very most, all the states inLi are checked once in step (4)
(states include a time-stamp). Given a state and an action, we assume that there exists a
data structure (for instance a table) that maps the transition functionτ (i.e., outputs the next
state for the agents) in at most O(max(|Li |).|A|) time units. Therefore, steps (4) and (5)
take O(max(|Li |) · |A|) time. All in all, the algorithm is polynomial.

In order to show that MSLA outputs a minimal social law, we must first prove that at
the end of the algorithm, the social lawσ that the algorithm outputs is a useful law for the
systemS. Each agenti has a strategy that obtains the goal. Indeed, the original planPi is
always preserved along the algorithm as no other agent’s action that could interfere with
agenti ’s plan (and make it depart from the original plans) is allowed (step (4) rejects any
strategy of agentj which “threatens” agenti ’s plan). As there is no safety goal,σ is useful.
In order to prove that the law is minimal, we suppose, for a contradiction, that there is an
actiona ∈ A′i (s) (for somes) that could be removed fromA′i (s), such that the resulting
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social lawσ ′ would still be useful. However, if such an action exists, it must have been
added at step (4) of the algorithm. Therefore it means that taking this action will make the
other agent depart from her original plan (otherwise it would not have been added then).
By making this action legal, we have introduced the possibility that the other agent will
not be able to reach her goal anymore, since the first agent can force her out of her goal by
choosing his new actiona at s. Thereforeσ ′ is not useful. This contradicts the assumption
above and thusσ is minimal. 2
5.2. Solving the AGV case study

The AGV case study presented in Section 3.1 can be represented and solved within our
model. We now describe a sketch of how this can be done. Each robot has a finite set of
statesLi that is a product of two components. Each state of one of the components refers
to a station the AGV may be in, and each state of the other component refers to a station it
may be in and observations it may have (i.e., in this second component a state refers both
to a station and to the local observations made). There is an initial state where the agent
selects whether it will observe only its station or the neighboring coordinates as well (i.e.,
a decision about the component of states to be visited). There is also a distinguished state
that denotes collision. The goal is to follow a particular path along the ring without (the
need to) observing the neighborhood, and without colliding. This can be easily defined by
a path of states of the first component. The transition function will capture movements in
the ring topology and potential collisions. The MSLA algorithm can be used now in order
to build a minimal social law that is similar to the one presented in Section 3.1. The initial
goal (according to which the minimal social law in MSLA is constructed) captures in fact
the useful social law based on which the corresponding minimal social law in Section 3.1
is built.

At this point, we are armed with a new tool (minimality) to choose a ‘right’ social law
(at least as long as we are concerned with flexibility), have tried it out on two domains of
interest, and have examined computational issues related to it. Is this criterion ultimate?
Do other criteria exist and what will their interpretation be? How do they compare with
minimality? To answer these questions, we shall consider an alternative to minimality, a
task that we undertake in the next section. We will consider a criteriona priori different
from minimality, that we call simplicity. We shall draw connections between the two
concepts in Section 8.

6. Simplicity

6.1. Introduction

In the previous sections, we introduced guidelines for the design of ‘good’ social
laws. Usefulness, as the cornerstone of the approach, was a necessary requirement but
was in many cases too poor a criterion to meaningfully lead the designer to a clear-cut
choice among equally-useful social laws. We therefore proposed a criterion that we called
minimality which attempts to find less constrained useful social laws.
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Minimality sought to minimize constraints and exploited the full capabilities of the
agents. Our intent in this section is to suggest an alternative approach to minimality. We
consider a different concept, centered around the agent and its possible limitations. In this
approach, we attempt to relax the need for the agent to rely heavily on his sensoring
capabilities (or to possess such capabilities), in order for it to be able to comply with
the law. Our purpose is to focus on simple social laws, i.e., useful social laws which are
applicable to a variety of agents with a range of sensors (as well as to agents without
these sensors). The idea behind simplicity is that some agents might be able to follow
only simple laws, since a non-simple law could rely on capabilities not available to them.
Moreover, simplicity reduces the sensitivity of a given system to modifications of the
agent’s capabilities. Roughly, if a law makes use of the whole range of an agent’s sensoring
capabilities, a slight change in these capabilities (for instance, as a consequence of faulty
sensors) will render the law inadequate and require re-design of the system. Notice that
although we view this improved independence of the law from the agent’s sensoring
capabilities as the main focus of our study of simplicity,there will typically exist other
important reasons for looking at simple laws: learning the law is likely to be faster, and the
representation of the law is likely to be more succinct.

The idea of simplicity is not new and can be found in research on bounded rational
players in game theory. Rubinstein [51] proposes a representation of strategies as finite-
state machines. In this representation, a strategy is modeled as an automaton in which
each state incorporates also the action the strategy instructs the player to take at a specific
situation, and transitions are driven by the other players’ actions. Since a social law can be
seen as a set of strategies, a similar representation could be used to model our concept of
simplicity. Our definition of the concept of simplicity can be considered as a generalization
of the idea that strategies are simple if they can be represented by a small automaton. In
the context of social laws, reduced sensory capabilities will cause certain states to become
indistinguishable; when states are indistinguishable, the constraints to be obeyed in these
states should be identical.

In order to discuss the advantages associated with simplicity, we need a precise definition
of what a simple law is, which we provide in this section. We also dwell on the importance
of simplicity and argue that using the concept as a criterion to distinguish between
candidate useful social laws is a plausible and recommended approach.

6.2. Simple social laws

Everything should be made as simple as possible, but not simpler.
—Albert Einstein, cited in[36]

6.2.1. A motivating example
Imagine you are driving on a bi-directional two-lane country road, with one lane

separated from the other by a dotted line. Traffic rules require that you keep driving in
the right lane and use the left lane only to overtake another vehicle. Of course, you shall
not attempt to overtake if a third vehicle is moving toward you in the opposite lane. Such
laws have been accepted in many countries since they guarantee that no accidents will
occur as a result of collisions when overtaking. Note however that they rely on your ability
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to identify situations where a vehicle is coming in the opposite direction. Is this ability
absolute? How much can you trust it when you are driving at night, with no city lights
or with unreliable head-lamps? In such cases it would probably be better to follow more
restricted laws, e.g., by forbidding overtaking.

The preceding example underscores an important point about simplicity. Restricting
actions is only one way to attain a lesser degree of dependency on sensors. Allowing
unrestricted freedom could sometimes be an alternative way to make sensor dependency
less critical. Thus, our definition should be general enough to encompass both stringent
and less stringent laws.

6.2.2. Formal definitions
We now formalize the notion of simplicity. We use the computational model defined in

Section 4. For convenience, we require also that the set of actions prescribed by the law
at a statesi of agenti includes at least one action. It allows us to ensure that an action
be performed at each state (but it could be the null action or “do nothing”), and therefore
provides us with a convenient way to express necessity. Note also that in the computational
model, a law defines, at a given state, a subset of the physically possible actions at this
state. In the literature, this property is called physical adequacy.

We would now like to provide a measure of the complexity of a useful social lawsl
in a given systemS, and to compare social laws according to this measure. Clearly there
are several ways to do so and we choose a general definition that captures the motivation
presented above.

Definition 6.1. Consider a two-agent systemS = 〈L1,L2,A,A1,A2, τ 〉 and a useful law
sl for S such thatsl= {A′1,A′2}. The partitionPi of the state spaceSi of agenti is the set of
the equivalence classes overSi under the following equivalence relationR: for two states
s1, s2 in Si , R(s1, s2) iff Ai(s1) \A′i (s1)=Ai(s2) \A′i (s2)

It is easy to check thatR is indeed a reflexive, symmetric and transitive relation.
Intuitively, two statess1 ands2 will be in the same element of the partitionP if and only
if the set of actions allowed bysl in s1 is exactly the same as the set of actions allowed
at s2. Once we view a social law as defining a partition over the state space of the agent,
a measure of complexity can be related to the complexity of the partition it defines. This
connection is drawn in the following definition.

Definition 6.2. Given two useful social lawsl and l′ for a (two-agent) systemS, each
one with corresponding partitions (for each agent respectively)(P,Π) and(P ′,Π ′), l′ is
simpler thanl if for every elementPk ∈ P andΠr ∈ Π , there existk′ and r ′ such that
Pk ⊆ P ′k′ (respectivelyΠr ⊆Π ′r ′ ), with strict inclusion for at least onek (or r).

In order to illustrate our definition, let us consider a situation modeled as a multi-stage
two-player game where each player plays either a full cooperation game (whose matrix
payoff is given in Fig. 1), or a prisoner’s dilemma game (Fig. 2), alternatively. We assume
that the specification requests each player to always achieve the best payoff he could have
achieved given the strategy played by the other player (in other words, to play a Nash
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Fig. 1. A full cooperation game, witha > 0. Fig. 2. Prisoner’s dilemma witha > b > c > d .

equilibrium). Let us examine the law “play D when in the prisoner’s dilemma stage and C
otherwise”. This law, that we will callσ , is useful. It splits the state space of each agent
into two subsets, associated with playing D and playing C. Canσ be simplified? If we
require our agent to always play D, the resulting lawσ ′ will be simpler thanσ . Indeed,
imagine that a player loses the capability to discern between the two different stages of the
game or that we, as designers, are restricted as to the number of actions we can implement
into our agents, thenσ ′ offers an attractive alternative toσ . Note that in our search for a
simple law we again only consider useful social laws, as non-useful laws have little interest
whatsoever for the designer, even if they are simple. Therefore, the task of finding a good
social law with which the designer is charged is a double performance: restrict as less as
possible the freedom granted to the agents in order to benefit them all, and design social
laws that are simple enough to be followed by even primitive agents.

7. A computational study of simple social laws

In this section we consider computational issues related to simplicity.

7.1. Designing simple laws is not simple

We focus on the simplest kind of simple laws, i.e., social laws where each agents’
partition consists of a single element. Note that the law need not be identical to each agent,
provided it defines a single element partition for each one of them. We show that deciding
whether such a law exists is an NP-hard problem.

Theorem 7.1. Given a(two-agent) systemS with a single initial configurationc0 and
where each agent has a single(liveness) goal gi , deciding whether there exists inS a
useful social law with single-element partitions in the agents’ state space isNP-hard.

Proof. The reduction is from 3-SAT (see [22]). Assume that we are given an instance
of 3-SAT with k clauses and letn be the number of different primitive propositions in
the formula. We consider the two-agent system where the agents are represented by two
automataA1 (Fig. 3) andA2 (Fig. 4) as follows.A1 hask + 1 states among which a
single initial states1

1 is associated with the first clause in the 3-SAT formula, a sequence
of k − 1 intermediate statess1

2, . . . , s
1
k , each associated with one of thek− 1 other clauses

of the 3-SAT formula, respectively, and one goal states1
k+1. A2 hasn + 1 states with
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Fig. 3. The automatonA1 corresponding to the 3-SAT formula:(x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x2 ∨ x3 ). There are 8
actions, and three states.

Fig. 4. The automatonA2 corresponding to the 3-SAT formula:(x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x2 ∨ x3 ). There are 8
actions, and five states.

initial states2
1, a sequence ofn− 1 intermediate statess2

2, . . . , s
2
n , and one goal states2

n+1.
(Notice that the number of non-terminal states inA2 corresponds to the number of primitive
propositions in the 3-SAT formula.) We define the set of possible actionsA at any state of
the agents to be{a1, . . . , a2n}, each action corresponding to a literal or its negation. The
transition functions are as follows: whenever agent 2 is ins2

i (i 6 n), performing the action
corresponding to literalli or to its negation moves him tos2

i+1. Otherwise, he remains in
the same states2

i . At each state, all the actions are therefore physically possible, but only
two are moving the agent one state ahead. As for agent 1, if the agent performs at a state
s1
i an action corresponding tol, while the other agent performs the action corresponding

to l, A1 moves to its special statebad from which it cannot escape (any action leads him
back tobad). Otherwise, if the agent performs atsi an action corresponding to one of
the propositions in the associated clause negation of the it moves to the next statesi+1.
In all other cases, it remains insi . Each agent’s goal is to reach his last state (sk+1 for
agent 1 andsn+1 for agent 2). We now claim that the 3-SAT formula has a satisfying
assignment if and only if the system has a simple social law with one element in each
agent’s partition. Assume thatα is a satisfying assignment for the formula. We define the
social lawΣ (identical for both agents) to allow all the actions wherel is true underα.
The set of actions is the same for every state of the agent (i.e., the partition of the law has
only one class). Sinceα is a satisfying assignment, it follows that for each clause there is at
least one literal which is true. Therefore agent 1 can reach the goal state by performing the
corresponding action of the appropriate literal at each state. Likewise, either one literal or
its complement will be true and therefore agent 2 can reach his goal as well. Moreover, no
literal l and its complement will both be true (α is a satisfying assignment) and thus agent 1
will never reachbad (as it would mean performing the action associated withl while the
other agent performs the action associated withl contradicting the fact thatα is a satisfying
assignment). It follows that the social law is useful and simple with partitions composed of
a single class. It remains to show that if a simple social law (with one element) exists, then
α is satisfiable. Note that the simple social law need not specify the same action functions
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for both agents. LetΣ be such a law. At each clause corresponding to a statesi of agent 1,
assign the value true to literals associated with the actions authorized by the law atsi . As
Σ is useful, there is, in each state, an actiona which leads to the next state and therefore,
Σ defines a partial assignmentα to the literals of the formula. Suppose for a contradiction
that in this assignment, a literall and its negation both get a true value. However,Σ must
allow agent 2 to take at least one of the actions corresponding toli or li , for all i 6 n, in
order for the agent to be able to reach his goal. Therefore agent 2 might perform the action
associated withl whereas agent 1 might take the action associated withl at the same time
(recall that the same set of actions is allowed at each state of an agent since the law defines
one-state partitions). In this case,Σ would not be useful, and thus,α must assign a true
value to either a literalli or its negation but not both.α can be completed by assigning a
true value to literals which did not receive a true value, and neither did their negation. The
resulting assignment is a satisfying assignment for the 3-SAT formula.2

The reader should notice that in the proof of the above theorem we did not explicitly
incorporate time-stamps in the states of the automata. The reason for doing so is ease of
exposition since one can easily derive automata with time-stamps from our construction
without challenging the correctness of our analysis. In this process, any action leaving an
agent in his current state would be modeled in the time-stamped automaton as a transition
between two states which differ only by their time-stamp. Overall, if the original automaton
hasm states and the bound on the plan isk (k = O(m)), then the extended automaton
(incorporating time-stamps in the state) will havem(k −m) states, i.e., O(m2) states. The
construction remains therefore polynomial in the length of the formula.

7.2. Homogeneous simple social laws

What can be said if we require the social law to define identical partitions in the state
space of the agents? Clearly, such ‘homogeneous’ simple social laws are a subset of the set
of available simple social laws in the system. However, this additional constraint does not
make the design of one-state simple social laws computationally easier.

Theorem 7.2. Given a(two-agent) systemS with a single initial configuration where each
agent has a single goal, deciding whether there exists inS a useful social lawidentical to
all the agents, with a single element in their partition, isNP-hard.

Proof. The proof resembles the proof given in the preceding theorem and uses a slightly
different reduction from 3-SAT. Assume that we are given a 3-SAT formula withk clauses
andn primitive propositions. We consider the following two-agent system: the agents are
modeled as identical automataA1 as defined in the proof of Theorem 7.1 (see Fig. 5 for an
example). Each has a single initial states1 associated with the first clause of the formula, a
sequence ofk − 1 intermediate states, each associated with one of thek − 1 other clauses
of the 3-SAT formula, respectively, and one goal statesk+1. There is also a special state
bad whose purpose will be explained later. The set of actions is identical at each state of
both agents. It includes 2n actions, each corresponding to one literal (or its negation) of
the 3-SAT formula. The transition function is as follows: if an agent performs at a statesi
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Fig. 5. A two-agent system where each agent is represented as the automaton of Fig. 3. The system has a simple
homogeneous law, with one class in each agent’s partition. Actions allowed by the law at each state are shown in
bold.

(i 6 n) an action corresponding tol and the other agent takes simultaneously the action
corresponding tol, both move to their statebadfrom which they cannot escape (any action
returns them tobad). If he performs an action which corresponds to one of the literals of
the clause with whichsi is associated, he moves to the next statesi+1. Otherwise, he moves
back tosi . At statesk+1, any action moves the agent back tosk+1. We now claim that the
3-SAT formula has a satisfying assignment if and only if the system has a (homogeneous)
simple social law with one element in the agents’ partition. Assume thatα is a satisfying
assignment. We define the social lawΣ to allow only actions wherel is true underα. This
set of actions is identical across the states of the agents. Sinceα is a satisfying assignment,
it follows that for each clause, there is at least one literal which is true. Thus, the agent can
reach his goal by performing the action corresponding to this literal at each state. Also, no
literal and its complement will both be true, and therefore no agent will ever reach hisbad
state. Hence,Σ is useful. Now, assume thatΣ is a homogeneous simple social law for our
system. Since it has only one element in the agents’ partition and it is useful, the same set
of actions is legally possible at each state. Define the (partial) assignmentα to give a true
value to the literals of the formula whose corresponding actions in the system are allowed
by the law. Clearly, at least one literal in each clause receives a true value. Also, since the
law defines identical action functions to both agents, should two conflicting actions (i.e.,
actions associated with a literal and its negation) be allowed byΣ , they would have to
be allowed at any state, and to both agents. As a consequence, an agent could perform
one of these actions, while the other would perform the second, and both would move
to bad, contradicting the usefulness of the law. Therefore inα no literal and its negation
receive a true value.α can be completed by assigning a true value to literals which did not
receive a true value, and neither did their negation. The resulting assignment is a satisfying
assignment for the 3-SAT formula.2
7.3. Quasi-modular systems

We now present a special class of systems, for which designing simple social laws
with single-element partitions is efficient. In the following definition,τi refers to theith
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component of the image of a given state vector and action vector by functionτ (in a two-
agent system, this vector has only 2 components).

Definition 7.1. Let be given a two-agent system and lets ∈ Li, a ∈ Ai(s), s′ ∈ L3−i ,
and a′ ∈ A3−i (s′). A quasi-modular system is a two-agent systemS with an initial
configurationc0 and a single liveness goalgi for each agent, such that:

For i = 1: If τi(s, s′, a, a′) is defined andτi(s, s′, a, a′) 6= bad then for alls′′ ∈ L3−i , and
a′′ ∈A3−i (s′′) for which τ (s, s′′, a, a′′) is defined, one of the following is true:
• τi(s, s′′, a, a′′)= τi(s, s′, a, a′).
• τi(s, s′′, a, a′′)= bad (wherebad is a designated state).

For i = 2: If τi(s, s′, a, a′) is defined andτi(s, s′, a, a′) 6= bad then for alls′′ ∈ L3−i , and
a′′ ∈A3−i (s′′) for which τ (s′′, s′, a′′, a′) is defined, one of the following is true:
• τi(s′′, s′, a′′, a′)= τi(s, s′, a, a′).
• τi(s′′, s′, a′′, a′)= bad (wherebad is a designated state).

In other words, ifτ is defined at the appropriate states, thenτ (s, s′′, a, a′′) leads agent 1
either to the same state asτ (s, s′, a, a′) would, or to abadstate (and similarly for agent 2).
A bad state will typically correspond to a dead-end state from which reaching the goal
is impossible. A quasi-modular system is therefore a two-agent system where transitions
that do not lead to abad state are fully determined by the action chosen by the agent,
irrespective of the actions of the other agents. This characterizes systems where interactions
may prevent agents from achieving their goals, but (otherwise) do not modify the outcome
of their actions.

Definition 7.2. A moderatequasi-modular system is a quasi-modular system that satisfies
|⋂si

A(si)| =O(log(maxi |Li |)), for all i.

We can now state the following theorem.

Theorem 7.3. Given a moderate quasi-modular systemS, finding a simple social law with
one element in the associated partition forS (if exists, and otherwise announce that no such
law exists) is polynomial.

Proof. We consider the homogeneous case. The non-homogeneous case is treated
similarly. The proof is constructive: we show that we can enumerate the candidate social
laws and check their usefulness in polynomial time. There are only polynomially many
such laws as we have a logarithmic number of actions that can possibly constitute the set
of actions allowed at any state (those in

⋂
si
A(si)) for each agent. It remains to show that

the verification process can be done in polynomial time. Given a candidate social law, we
simulate for each initial configuration (there are polynomially many) the possible paths that
an agent can follow when obeying the given social law. The result of this simulation is a
di-graph (it’s a directed acyclic graph as states are time-stamped). In order to construct this
graph, we can first ignore the interactions between the agents and get a graphG without
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any transition tobad. We then extend at each state the digraph with transitions tobad if
any, based on the set of states that the agents can be in at the given time (as reflected byG).
As the system is quasi-modular, there will not be any other interactions between the agents.
In particular, this means that we do not need to consider the actions the second agent took
at earlier moves. The construction of the graph is bounded by(maxi |Li |)2 · |A|2. We first
mark each agent’s goal states (included ingi ) asgood. Then we proceed backwards in the
graph by labeling a node asgoodif and only if there exists an action leading from the node
to a state marked asgoodand there is no possibility that this action will take the agent to a
badstate. Provided that we keep appropriate data structures (for each state, a list of actions
that can lead tobad, and a global list of states that have been visited by the backwards
induction procedure), this will take O(|Li |2 · |A|2). We stop as soon as all the initial states
have been marked as good, or all the states have been visited, and turn to the other agent for
which we check the law similarly. If all the initial states of both agents have been marked
as good, the social law is useful as there is a plan that guarantees achievement of the goal
for each agent (by following the actions that have been used in labeling the different states
asgood). 2

8. Simplicity and minimality

In this section we study the relationship between simplicity and minimality. Are simple
social laws necessarily minimal? Does minimality entail simplicity? What can be said
about systems in which minimal and simple social laws are related? These are some of
the questions that we address here.

8.1. Connections between minimal and simple social laws

8.1.1. Minimality versus simplicity
The first question that we consider is whether minimality and simplicity can be inferred

one from the other. Our analysis will use the computational model of the previous section.

Proposition 8.1. Simple social laws are not necessarily minimal.

Proof. Consider Traffic Law 1 for the AGVs case study (the ring environment) presented
in Section 3. We showed at the end of Section 3 how to express this case study in terms
suitable for analysis in our computational model. In this model, Traffic Law 1 is simple but
not minimal. 2
Proposition 8.2. Minimal social laws are not necessarily simple.

Proof. Traffic Law 2 in the ring environment is minimal but not simple. Indeed, it is
possible to obtain from Traffic Law 2 (whose partition consists of three classes of states) a
law with less classes. This is achieved by combining all the classes together and prescribing
the action “clockwise” at all state. The resulting law is Traffic Law 1 which was proven to
be useful. 2
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Consequently, we can find a minimal social law for the ring environment, which is not
simple, and a simple social law, which is not minimal. This raises the question of whether,
given a domain, there always exists a minimal and simple social law.

Proposition 8.3. A simple and minimal social law does not necessarily exist.

Proof. Again, the counter-example is the ring environment. To show that in this
environment, no social law can be both simple and minimal, we first prove that any given
social law with more than one element in its partition can be simplified. Given such a social
law, we can unify the classes in the partition associated with the law (and obtain a single
element partition) by requiring the agents to move “clockwise” at each state. Each class
of the non-simple law is properly included in the single class of the resulting law. As this
law is useful (it is Traffic Law 1), it is simple. Next we observe that no social law with one
element in the associated partition is minimal. First, no social law which allows thesame
set of more than one action at all states (for example “stay in place or go clockwise”) is
useful as it cannot always prevent collisions. Each of the possible social laws with onlyone
(same) action allowed at each state is not minimal, as we might relax the law by allowing
an additional action whenever the neighboring stations of the current position of the robot
are empty. For instance, the social law “go clockwise” can be extended if we allow a robot
to stay immobile at all those states where no robot directly follows it. Therefore no simple
social law is minimal. 2
8.1.2. A simple and minimal social law

Although some domains do not lend themselves to both simplicity and minimality, the
notions of simplicity and minimality are not orthogonal. In order to show this, we now
present a well-known domain, the multi-robot grid environment [56], for which a useful
and efficient social law can be proven to be both simple and minimal.

This domain is important as it has already been studied in the literature and an efficient
social law has been proposed for it. The grid is frequently considered to be a simplification
of a robot motion-planning environment, and it leaves enough degrees of freedom to make
the analysis of social laws in general, and minimality/simplicity in particular interesting.
We will be able to show that a useful and powerful social law presented in previous work
on artificial social systems is both minimal and simple. The proof of this is nontrivial,
and illustrates how the concepts of minimality and simplicity can be usefully applied to
generate good social laws, and to verify properties of these laws.

A multi-robot grid system can be identified, e.g., with lanes in a supermarket or paths in
a warehouse. Roughly speaking, it consists of a graph whose topology is a grid, on which
several robots are moving. A more complete description of the domain appears in the proof
of the following proposition.

Proposition 8.4. A minimal and simple social law exists in the multi-robot grid domain.

Proof. The structure of the environment is a squaren× n grid (n is assumed to be even),
with m6 4(n− 1) robots, located on coordinates of the grid. Each robot is fully aware of
its current position on the grid, and has the capability to move to one of the stations in the
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vicinity of its current position, or stay immobile. As time goes on, each robot moves around
the grid and at discrete regular points in time, occupies one of then2 coordinates on the grid
(in the sequel, “a station”). It then decides on the action to take as a function of its percepts
(its current position) and the legally available actions at this state. A collision is identified
with two robots on the same coordinate. The system is synchronous and movement to a
neighbor coordinate takes one time unit. No perception of the surroundings is assumed (a
robot cannot observe the state of the stations that surround it).

Row b will be the bottom row of the grid and rowu the top row. Columnl will be the
second leftmost column of the grid. Initially the robots start operating from the 4(n− 1)
stations of the border of the grid, and each follows the same set of rules as follows. At each
station ofb, a robot has to move ‘right’ except at the rightmost station where the robots
move ‘up’. On l (provided the position is neither onu or b), the motion is ‘up’. Onu,
robots move ‘left’, except when at the leftmost column where they move ‘down’. At any of
the other stations of the grid, both ‘left’ and ‘up’ are allowed. These rules will be referred
to as Traffic Law 3, and are shown in Fig. 6.

Lemma 8.5. Traffic Law3 is useful.

Proof. Let us refer to the coordinates of the leftmost column and the bottom row as the
outer contour, and the rest of the coordinates as the “inside” of the grid. On the outer
contour, a robotR could collide only at the top left corner as only one action is allowed
at the states of the contour and robots have only one way to enter it, namely the top left
corner. However colliding there would mean that both robots would have already collided

Fig. 6. The multi-robot grid environment and Traffic Law 3.
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in a state of the inside of the grid, and thus would not have reached the top left corner.
Let us define a system of axes as in Fig. 6, with origin at the lower right corner. The
position of a robot in the inside of the grid is defined in this system byx + y. With the
given social law, the position can only increase at each state by one, untilR reaches the
top left corner. Suppose thatR collides with another robot afterk steps,k 6 2n− 2. Since
both robots must have been previously at a state of the rightmost column, their position on
this column would have been the same. This could only be if both started their motion at
the lower right corner together, since at the starting configuration, no two robots occupy
the same coordinate on the rightmost column. However, this would contradict the fact that
R reached this corner without colliding. Therefore, we guaranteed that no collision would
occur. SinceR can choose an appropriate course of actions in the inside of the grid in order
to reach any point of the grid, the law is useful.2

A variant of the law described in the above proof has been shown to be very useful and
efficient in the context of traffic laws for mobile robots [55,56]. It is interesting to see that
this existing law is both simple and minimal. This requires a somewhat elaborated proof
that we now present. This gives us another support to the basic role that minimality and
simplicity play in the design of desired social laws.

Lemma 8.6. Traffic Law3 is simple.

Proof. Traffic Law 3 yields a partition with elements corresponding to the following
subsets of actions:{up}, {down}, {right}, {left}, {up, left}. In order to draw a simpler social
law, we consider the effect of unifying two classes around a single action as shown in
Fig. 7. One should be aware that when considering a possible simplification for an agenti

we cannot assume any assumption as to another agent’s partition, since it might very well
undergo a simplification process as well. However, whatever the law, it will always have to
guarantee the specification. A case analysis (see Fig. 7) shows that it is not possible to find
a partition that would replace the current partition and would keep the law useful.

(In all the following cases, refer to Fig. 6 where the law is drawn together with the state
partition.)

1. Case 1: Let us suppose for a contradiction that a law exists where these states
are grouped together under the action ‘left’, and the law is simpler. Consider the
rightmost column. In order to reach it, action ‘right’ will have to be allowed at the
states where {up, left} is currently required. But these states include the rightmost
column where ‘right’ is physically impossible.

2. Case 2: In such a case, the coordinate corresponding to the second leftmost column,
bottom row, is not guaranteed to be reachable anymore, contradicting the usefulness
of the law.

3. Case 3: The top left corner of the grid is not guaranteed to be reachable anymore.
4. Case 4: The lower left corner of the grid is not guaranteed to be reachable anymore.
5. Case 5: The lower right corner is not guaranteed to be reachable anymore.
6. Case 6: The top right corner is not guaranteed to be reachable anymore.
7. Case 7: The top right corner is not guaranteed to be reachable anymore.
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group up down left right

up with down top left lower right top left lower right

up with left top lower right case 1 lower right

up with right case 2 lower right lower left lower right

down with left top case 3 top left top right

down with right top left bottom top left case 4

left with right top bottom lower left top right

up-left with right case 5 bottom lower left rightmost

up-left with left top right case 6 case 7 top right

up-left with up case 8 lower right case 9 lower right

up-left with down top left case 10 top left rightmost

Fig. 7. Simplifications of Traffic Law 3. The first column indicates the two sets of states to be combined. The
action to be performed at the resulting common set appears in the next columns. In each cell of the table, we
indicated the reason this unification is impossible. Whenever the reason stems from the fact that we would allow
an action physically impossible at a state, we specify this state. Otherwise, we analyze the case independently in
the text.

8. Case 8: Suppose for a contradiction that unifying around ‘up’ is possible. In this
case, the action “down” at the leftmost column will have to be available since
otherwise there will be no way to reach the coordinates of the bottom row. For the
same reason, at the bottom row, ‘up’ will have to be made available (e.g., in order to
reach the column in the middle of the grid). As a consequence, the lower left corner
is not guaranteed to be reachable to other agents. Indeed, after the simplification,
our robot could decide to move back and forth between this coordinate and the one
above, preventing any other robot to reach the corner without colliding.

9. Case 9: The second row (from the bottom), rightmost column is not guaranteed to
be reachable anymore.

10. Case 10: Let us consider the top right corner. This corner is not guaranteed to be
reachable anymore if this simplification is made. Indeed, in order for the robot to
reach the top row, it will need to move on the second leftmost column, as motion
on other columns is ‘down’ only. However, once at the top row it will not be able to
move ‘right’ (although this is the only way to reach the corner) since ‘right’ is not
physically available at the rightmost corner, and all the states of the top row (except
the leftmost corner) are in the same class. Therefore the law would not be useful.
To cover all possible simpler laws, we should also look at simplifications involving
union of two classes aroundmorethan one single action. In most cases (all the cases
of the rows in the table having only one “casex” in the row), such a simplification
is not possible. Indeed, the reason for rejecting a simplification corresponding to a
cell not marked as “casex” lies in the existence of a state where we would allow an
action physically unavailable. Therefore, combining states by allowing this action,
even with other actions, is not possible. The only two cases that we still need to
consider are replacing the actions at the states corresponding to {up, left} and {left}
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with {down, left} and the actions at the states corresponding to {up, left} and {up}
with {up, left}. In the first case, the top right corner is not guaranteed to be reachable
anymore, whereas in the second case a robot at the lower right corner can choose
to move ‘left’, ‘right’, ‘left’, ‘right’ alternately (since ‘right’ has to be available at
the other states of the bottom row in order for them to be reachable), precluding any
other robot to reach the corner without colliding.

The case analysis exhaustively covers any potential set unification, and thus the law is
simple. 2
Lemma 3. Traffic Law3 is minimal.

Fig. 8 shows a situation depicting a possible configuration, reachable from the initial
configuration, where the actions at the leftmost column and the bottom row cannot be
extended as a robot would collide. It is therefore only necessary to verify that we cannot
allow a robot to go ‘down’ or ‘right’ when at the top row, ‘right’ at the second leftmost
column, and either ‘right’ or ‘down’ at one of the remaining states.

1. Top row→ right: If the robots are positioned one after the other on the top row,
allowing to move ‘right’ will result in a collision (since moving ‘left’ is the normal
behavior).

2. Top row→ down: Let us suppose that we do allow the action ‘down’ at one of these
states with coordinates(x,n) for roboti. Consider the following path for roboti: go
around the border until reaching(x,n) and then go down. Now assume roboti + 1
follows roboti until reaching the second top row and then turns left. The two robots
will collide.

3. Second leftmost column→ right: Assume that roboti + 1 exactly follows roboti
until they reach this column, at which point roboti takes a ‘right’ action and collides.

4. Remaining states→ right, or down, or both: It can be readily seen that robotsi and
i + 1 could collide if we were to design a path for roboti + 1 such that both robots
would find themselves at the same coordinate (the paths in Sections 2 and 3 above
are examples of such situations).

Therefore the law is minimal.2
The proposition follows as a result of Lemma 3.

Fig. 8. A possible configuration of the multi-robot grid environment.
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8.2. Policies and simple social laws

8.2.1. Are policies simple?
Since the concepts of minimality and simplicity seem to be loosely connected, we turn

our attention to a special kind of social laws, policies. A (useful) policy is a (useful) social
law that specifies for each state of each agent a single action. First, we show that useful
policies are not necessarily simple. We then prove a strong connection between simplicity
and minimality in the context of policies.

Proposition 8.7. A useful policy is not necessarily simple.

Proof. We consider the multi-robot grid environment with the following modifications.
Initially, m 6 n robots are positioned on the border of the grid such that two adjacent
robots are separated by at least three stations (of the border). Our goal as designers, is to
ensure that peaceful coexistence is guaranteed, i.e., no collisions occur and every point on
the grid is reachable. We assume that a robot can move forward, backward, turn left or right
(a 90 deg turn with no linear move), or stay immobile. The state of a robot is described by
the following components:
• A binary variable to distinguish between odd and even rows.
• A variable to distinguish between the rightmost column, the leftmost column and the

column adjacent to the leftmost.
• A variable specifying the location of the leftmost column with respect to the current

position of the robot. It can take on one of the values ‘left’, ‘right’, ‘front’, ‘back’.
When on the leftmost column, this variable is defined as ‘front’ at the upper right
corner, ‘back’ at the lower right corner and ‘right’ at all other places.

If all the agents follow a snake-like path (see Fig. 9) then they are guaranteed to reach
any station on the grid in at most O(n2) time, without colliding. This path defines a
function from the nodes on the grid to an action ofA. Let us assume that the function
associates one of the available actions ‘forward’, ‘left’ or ‘right’ indifferently at states
which do not correspond to a situation encountered when following the snake-path on the
grid (for example, states that are a combination of a coordinate and an orientation that
does not appear in the snake-like path). As the path does not make use of ‘backward’ or
‘stay immobile’, we do not need to use more than three actions. Since the policy makes

Fig. 9. A snake-like path on the grid.
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use of the three other actions, the partition associated with the given social law has exactly
three elements. However, note that we can model a left turn as three consecutive right
turns: given the specification above, a robot has the capacity to distinguish between the
stages of a left turn modelled as a right turn, i.e., before turning right, the intermediate
states of the three consecutive right turns, and the following state where it has to go
forward. The full specification appears in Fig. 10. Note that a left turn modeled as three
right turns will take three steps instead of one but the original configuration above (where
there is at least a three-station interval between any two robots) ensures that no collision
happens. We can thus find an appropriate mapping between the state of the robot and
the two actions ‘right’ or ‘forward’. Therefore, we express the path function solely in
terms of the state space as specified above and the two actions ‘forward’ and ‘turn right’.
The partition associated with this law has two elements and thus, the resulting policy is
simpler. 2

Fig. 10. A description of the law at the stations of the grid. The robot is positioned at a station represented as
the intersection point between the edges. The edges stand for the incoming and outcoming tracks to and from
the station. The orientation of the robot is given by the arrow. Whenever an edge is enclosed in parentheses, the
corresponding states might or might not include this edge. The action prescribed by the law appears below the
description of the state.
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8.2.2. Weak simplicity
So far, we have found little correlation between simplicity and minimality, even in the

realm of policies. However, if we restrict the process of simplification to what we call local
simplification, strong connections can be stated.

Definition 8.8. Given a systemS, consider a social lawΣ and the partitionP = {P ik }k of
the states of agenti.Σ is locally simplifiable if there existPk1, . . . ,Pkl such that:

(1) Pk1, . . . ,Pkl ∈ P .
(2) Pk1, . . . ,Pkl are pairwise distinct.
(3) The following process yields a useful social law: modify the sets of actions allowed

in Pk1, . . . ,Pkl to make them all identical, and combinePk1, . . . ,Pkl in the resulting
partition. The rest of the agents remain untouched.

The particularity of local simplification lies in the fact that the other agents remain with
the same partition as in the original social law.

Local simplification allows us to consider a weaker notion of simplicity.

Definition 8.9. A social lawsl is weakly simple if it is not locally simplifiable.

Proposition 8.10. In quasi-modular systems, every minimal policy is weakly simple.

Proof. Suppose we are given a minimal policy. Being a policy, it specifies a unique action
at each state of the agent and thus there is no way to simplify the policy by forbidding the
unique action prescribed by the law at some of the states (recall that our model requires
leaving at least one action available at each state). Also, we cannot just add a new action at
these states as the policy is minimal. Therefore, it remains to show that replacing the actions
at some states by a single action (or group of actions), is not possible either. Assume for
a contradiction that there is a states for agenti where the law can be changed to include
actionb instead of actiona at this state. It is clear that (see Fig. 11)s can only be a state
on the path of states visited by agenti when following the original social law (we call this
sequence of statesP). Otherwise, extending the original policy by addingb at s would not
have altered the usefulness of the law (P remains untouched since the state is off-path)
and it contradicts the minimality assumption. Thuss is a state on the path to the goal. Let
s be the first state onP where the set of actions was changed by the simplification. As
assumed, the social law remains useful after the simplification. Sincea is not available
at s anymore, the new path to the goalP ′ will rely on the agent taking (without loss
of generality) actionb at s. First suppose thatP ′, after leavings, includes only states
which were “off-path” in the original social law. In this case, we could have addedb at s
contradicting the minimality of the law. Therefore, the path must rejoinP at some statex.
Now look at the first states′ after the two paths have merged, where the set of actions have
been changed by the simplification. The same reasoning shows that there must be a state
“upward” inP where the two paths will rejoin again. Eventually, the two paths will merge
after departing one from the other at some statew, and no states with new actions will be
encountered anymore. But then,b could have been added atw in the original policy which
contradicts minimality. Note that the fact that we are dealing with quasi-modular systems
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Fig. 11. The paths for agenti: P is shown in bold, the statess, x,w are shown on the path.

allows us to ignore the impact which the modification of the policy for one agent may have
on other agents. At statex, the corresponding states of the other agents are exactly the same
as when agenti followed his original policy since no agent will have been moved astray
to bad (the law would not be useful) and the states are time-stamped. This observation
is important as it justifies the fact that when deriving the contradiction, the states of the
other agents were implicitly the same as when agenti followed his original policy. If it
were not the case, it would be possible to find cases where a simpler policy exists without
contradicting the fact that the original policy is minimal.2

9. Discussion and related work

In this section, we review previous work on which this research builds. We first discuss
research that does not refer explicitly to artificial social systems, but addresses issues
related to this paper. We then present the artificial systems approach, examine how this
paper complements previous work on this topic and discuss implications that this research
has on the design of artificial social laws.

Coordination is a central issue whenever multiple individuals with independent will,
share a common environment. A possible way to coordinate such systems is to rely on
central coordination (e.g., [32,58]). Another approach is to rely on fully decentralized
solutions (e.g., [28,49,53]). Work that follows the latter approach has been characterized by
game-theoretical models of negotiations. For example, Rosenschein and Genesereth [48]
use such models to analyze how rational agents can coordinate their activities by striking
deals among themselves. Kraus and Wilkenfeld [29] describe a situation of conflict that
agents can solve by engaging in a negotiation process. The authors use classical bargaining
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game theory [45] where the time at which a deal is reached is an integral part of the
outcome of the negotiation. Rosenschein and Zlotkin [49] advocate the use of rules of
encounter, i.e., rules stating the agent’s behavior (and in particular, the structure of the
negotiations) when the agent’s activities interfere with those of another agent. Agents
use communication to converge to a joint plan (a deal) whose payoff is higher than the
one achieved when acting alone. The authors draw a relationship between categories
of domains and negotiation mechanisms (e.g., they characterize a set of domains, Task
Oriented Domains, where simple stable strategies lead to efficient outcomes). Other types
of models and techniques are used in order to model joint commitments/intentions that are
essential in order to follow desired activity in the corresponding decentralized multi-agent
system [8,10,25,26]. Needless to say that both ideas of decentralized problem solving, as
well as ideas with regard to the definition of joint commitments/intentions are relevant to
work on artificial social systems and social laws.

Work in the areas of organization theory (see [34]), team theory [35], and organization
roles (see for example [17]) is also of relevance. This work is especially concerned with
the design of agents’ roles and communication structures which enable a cooperative
achievement of a common goal. The reader should notice that work on artificial social
systems concentrates on a somewhat complementary issue: the off-line design and
computation of laws which enable each agent to work individually and successfully
toward its own goals during the on-line activity given that all the agents obey these laws.
Additional related work includes the synthesis of multi-agent programs [46] and work
on cooperative discrete event systems (DES) [47]. A main difference between these lines
of research and the work in the framework of artificial social systems stems from the
fact that the latter gives more structure for the design of multi-agent systems (first find
a social law and then enable agents to tend to work individually) while concentrating on
the fundamental problems of social design (we have to restrict the behavior of agents but
not restrict them too much).

This paper uses a “Society” metaphor. The agents are treated as a society, for which
minimal/simple useful social laws are designed. Society metaphors have been proposed
in the AI literature also in contexts which differ from the artificial social systems setting.
Minsky uses a society metaphor in his work on the society of mind [36]. The notion of
social choiceis an important element in, e.g., the work of Jon Doyle [15]. Finally, social
metaphors appear also in the works of Fox [20], Kornfeld and Hewitt [27], Malone [34],
and Simon [57] concerning organization theory. In this paper we treat the notion of an
artificial social system in a relatively narrow sense, and with a particular point of view in
mind. We wish to develop a theory to support the design of multi-agent environments, and
to assist the designer by supplying tools for the evaluation of social laws.

In spite of the generality of our work and of the artificial social systems approach it is
based on, we wish to emphasize that this work in no way diminishes the crucial importance
of mechanisms for interaction and communication among agents, nor the significance of
the study of effective representations for agents. Some of the work developed in LIFIA
[4,14] provides considerable progress in these complementary directions. The discussion
of various ways of modeling agents is of significant importance to the coordination between
agents. Further study of artificial social systems may need to take various representation
levels into account while addressing the construction of useful social laws. In addition, our
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work does not take into account the incentives agents have for cooperation. Some of the
work in CNR [7,11] has been concerned with issues such as defining goal adoption as a
basic form of cooperation and the effect of social power on cooperation among agents.
Although some of our technical machinery may enable to express concepts such as goal
adoption, our emphasis is on the design of artificial systems where agents are assumed to
conform to every law prescribed by the system’s designer.

The law-based approach can be traced to the beginning of the decade with work
on law-governed systems in the context of software engineering (Minsky, [37]). In this
framework, the author studied how a set of rules, governing the behavior of the objects of
a system, can facilitate the implementation of protocols. In Minsky’s terms a law is “an
enforced specification of protocols”. The approach is particularly adept at coordinating
heterogeneous systems where objects are driven by many programs that can possibly
change over time. In such settings, it is highly unrealistic to construct a system that
obeys the desired protocol (the so-called constructive implementation of protocols), and an
additional layer (the law) is needed. Minsky defines a law as a sequence of primitive actions
to be performed in response to the occurrence of a controlled event. Using this definition,
he presents various applications of laws whose objective is to enforce communication
protocols [37,38].

In the AI community, Moses, Shoham and Tennenholtz [39–42,56] initiated the study
of social laws as as an approach to the coordination of multi-agent systems. The approach
is broader than in [37] in which a law is a sequence of actions to be taken when an event
occurs. In the artificial social systems approach, a social law is a set of constraints on the
agents’ activity which is common knowledge among the agents. The effect of a social law is
twofold. On the one hand, it restricts the freedom of an agent. On the other hand, it reduces
the non-determinism which characterizes plans in distributed (and in particular, loosely-
coupled) environments. This is exemplified in [56] which studies coordination of multiple
robots in a multi-robot grid environment, where different social laws are imposed on the
system. The domain consists of ann× n grid and robots moving on this grid. The authors
analyze a number of social laws for this case study. Each guarantees that no collisions will
happen and that the robots will be able to design plans to move to any location on the grid.
They also analyze the efficiency of these different social laws as a function of the time and
the resources spent in the process of moving around, and discuss several computational
issues related to the design of the laws. In the model that the authors use, a social law
is a set of pairs{(a,P)} wherea is an action andP is a predicate on the state of the
system. This predicate states the most general condition on the system for which taking
a is allowed. Using this model, the authors are able to prove that the design of artificial
social laws is, in general, NP-complete. However, an important observation that they bring
forth is that since the design of social laws is mostly an off-line activity, being in NP is
not a negative result. It suggests that a guess-and-check procedure is a suitable method for
designing social laws.

An alternative model for artificial social systems, consisting of a set ofdependent
automata, is presented in [42]. Intuitively, this model defines a multi-agent system as
a set of non-deterministic automata. A social law explicitly prohibits certain actions at
some of the states of the automata, thereby reducing the non-determinism of the transition
functions. In the same study the authors also develop a logical framework to deal with
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the semantics of artificial social systems. Modal logic operators allow them to express the
notions of ability and constraints and are shown to be useful for reasoning about legally
and physically available actions.

Clearly, restricting the actions of the agents without discrimination has little chance to
be very helpful to the system. Consider for example a domain consisting of roads on which
our agents travel. Those roads cross one another at junctions where total freedom on the
side of the agents makes accidents much likely (obviously a very undesirable event for any
agent). In order to guarantee accident-free traffic, we could design a social law and oblige
all the agents to abide by it. For example, we could set a law that allows our agents to enter
the intersection only if the crossing road is free. This law certainly prevents accidents.
However, it restricts the agents too much. Although we have guaranteed an accident-free
environment, we have also introduced a possibility of a deadlock: when two agents reach
the intersection via crossing roads, they might find themselves waiting infinitely for the
crossing road to get free before initiating their move. This example illustrates the fact that
we can not accept any social law, but must ask that the law be useful, i.e., will enable the
agents to achieve their goals. For example, the law could oblige the agents to cross the
intersection one at a time, in a round-robbin policy.

The cornerstone of the law-based approach is therefore to benefit the system and
guarantee the specification. In other words, by imposing restrictions on the actions the
agents can take, the designer guarantees that they will always be able to achieve their
goals, no matter how the other agents behave. This property, usefulness, constitutes a clear-
cutting criterion for accepting a possible social law. Non-useful social laws are not to be
considered. Therefore, although an agent would certainly prefer a law which would restrict
the other agents completely while leaving him utterly free (and in this trivial case, there
would be no interactions with other agents’ plans), such a law would not be useful as the
other agents’ goals would not be guaranteed. A good social law should therefore restrict the
agents’ actions in order to minimize the possibility of conflicts, but should also leave these
agents enough freedom to achieve their goals. This tradeoff is referred to as the Golden
Mean Problem [42], and can be succinctly described as striking the right balance between
freedom and constraints.

Subsequent research on social laws has explored both theoretical and applied topics.
Tennenholtz [60] studies stable social laws where the notion of stability relies on
rationality. Briggs and Cook [6] study the situation where the agents are able to try out
different laws (from restrictive to lenient) in order to achieve their goals. They describe
an iterative process of deriving plans in social systems where the social law of the
system is decided upon dynamically (by communication between the agents or plan
synchronization). Although their approach considers several social laws among which
agents are choosing, they do not attempt to formally define an order relation on the set
of laws or a criterion for choosing a law. Also, the fundamental concepts of usefulness and
off-line design are somewhat absent from their study.

Application-oriented research has extensively dealt with the multi-robot grid environ-
ment presented in [56] and outlined above. Ben-Yitzhak and Tennenholtz [2,3] derive a
method for automatically synthesizing social laws in any grid environment, with or with-
out obstacles, where the purpose of the law is to specify on each segment whether motion
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is allowed and if it is, in which direction and at which velocity. The output of the algorithm
(the social law) is experimentally tested and compared to alternative approaches.

Moving still a step ahead in the search for automatic synthesis of social laws, Onn and
Tennenholtz [44] show how to efficiently derive social laws for motion control of agents in
any two-connected graph environment. They define the notion of graph-routing and show
that a network whose underlying graph is two-connected has a useful social law if it admits
a routing. They prove that any two-connected graph has a routing (which can be efficiently
constructed) and therefore, come up with an efficient procedure to design useful social laws
in any graph with such a topology.

In this work, we examine two criteria, minimality and simplicity, whose purpose is to
help the designer of an artificial social system in choosing among possible laws. The exis-
tence of multiple useful social laws with a wide range of different properties motivates this
study. Driven by the observation that artificial social systems with fewer restrictions display
robustness properties when faced with perturbations, we defined a measure of optimality
based on minimal sets of constraints. Our analysis stresses the fact that constraints placed
on an artificial social system might not correspond to the constraints actually needed for
efficient and flexible behavior. In addition, we have applied the general model to domains
of interest, in order to study the role of minimality in a variety of contexts. However, min-
imality, in its attempt to maximize the set of legal actions, can lead to quite complex social
laws. We therefore introduce an alternative criterion, simplicity, which attempts to derive
simple social laws based on a complexity measure that we define as well.

Although this paper concentrates on the conceptual and theoretical aspects of selection
among social laws, we believe that the insights and concepts presented in this paper can
be useful from an implementation perspective as well. Bearing these concepts/criteria
in mind when designing new social laws, and proving that these new laws do satisfy
these criteria, can lead to better systems and improved agents’ behavior. For example,
previously hand-crafted social laws lack an appropriate justification for their selection. An
analysis of their properties from the perspective of minimality and simplicity may shed
light on their properties. The results presented in this paper expose the necessity to foresee
future developments and perturbations when designing an artificial social system. Although
minimality and simplicity are limited in scope, they appear quite suitable for the off-line
design that characterizes artificial social systems, in the sense that they address, at the
design stage, issues that the system might face when running. To overcome the intrinsic
difficulties with finding a flexible and simple way to the coordination of independent
agents, we must continue to investigate the characteristics of systems upon which a law
has been imposed, and the conditions under which particular laws have to be preferred or
avoided. We expect that further analysis of the influence of different social laws on specific
artificial systems may suggest additional promising approaches to classifying artificial
social laws. We believe however that the notions of minimal and simple social laws will
continue to serve as basic cornerstones in this classification.
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