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a b s t r a c t

We introduce a new class of games, congestion games with failures (CGFs), which allows for
resource failures in congestion games. In a CGF, players share a common set of resources
(service providers), where each service provider (SP)may fail with some knownprobability
(thatmay be constant or depend on the congestion on the resource). For reliability reasons,
a player may choose a subset of the SPs in order to try and perform his task. The cost of a
player for utilizing any SP is a function of the total number of players using this SP. A main
feature of this setting is that the cost for a player for successful completion of his task is
the minimum of the costs of his successful attempts. We show that although CGFs do not,
in general, admit a (generalized ordinal) potential function and the finite improvement
property (and thus are not isomorphic to congestion games), they always possess a
pure strategy Nash equilibrium. Moreover, every best reply dynamics converges to an
equilibrium in any given CGF, and the SPs’ congestion experienced in different equilibria
is (almost) unique. Furthermore, we provide an efficient procedure for computing a pure
strategy equilibrium in CGFs and show that every best equilibrium (one minimizing the
sum of the players’ disutilities) is semi-strong. Finally, for the subclass of symmetric CGFs
we give a constructive characterization of best and worst equilibria.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Consider a system consisting of two resources, a and b, where each of them can be used in order to process a player’s
task, and the player chooses one of them to perform his task. However, if the resources are not fully reliable then the player
may decide to assign his task to both resources. More generally, suppose that there are n players who need to process their
individual tasks using one of the two identical reliable resources. The cost for each player for utilizing a particular resource
is a (nondecreasing) function of the congestion experienced by this resource. Naturally, each player aims at minimizing his
cost. An optimal solution would be that ‘‘half’’ of the players will use each of the resources. When modeled as a game, such
‘‘equal partition’’ is an equilibrium of the game. However, if the resources are not reliable, the players might choose both
resources to perform their tasks. Indeed, such behavior might be obtained in equilibrium of the corresponding game. As a
result of such behavior, the resources might be overloaded, and the cost to each player will be very high. More generally,
each playerwants tomaximize the probability of successful execution of his tasks, and simultaneously, tominimize his cost;
for example, a player may prefer not to use a resource if the congestion of that resource causes a long processing delay.

✩ A preliminary version of this paper appeared in EC-2005 Penn et al. (2005) [20].
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Hence, as we can see, reliability issues have significant implications on player behavior in congestion settings. In order
to address this challenge, we introduce a model termed congestion games with failures (CGFs), and establish several basic
results for this model. To the best of our knowledge, we were the first to incorporate the issue of failures into congestion
games.

Following the preliminary conference version of this paper [20], we considered another, alternative model of Congestion
Gameswith Load-Dependent Failures [CGLFs] [21]. Although the terms CGF and CGLFmay sound similar, thesemodels refer
to very different situations and have very different motivation. In a CGF, players strive to minimize the delay caused by
using a set of alternative resources, and the payoff of a player is determined by the minimum of delays of the set of selected
resources (and by incompletion costs). In a CGLF, a player receives a reward in the case of successful completion of his task,
and his objective is to maximize the difference between the expected benefit from the successful task completion and the
total cost of the utilized resources.

The class of congestion games was first introduced by Rosenthal [25] who proved that these games always possess a
Nash equilibrium in pure strategies. Congestion games are noncooperative games in which a collection of players have to
choose from a finite set of alternatives (resources). The utility of a player from using a particular resource depends only
on the number of players using it, and his total utility is the sum of the utilities obtained from the resources he uses.
Congestion games have been used to model traffic behavior in road and communication networks, competition among
firms for production processes, migration of animals between different habitats, and received a lot of attention in the recent
computer science and electronic commerce communities [15,18,24,25,27]. Rosenthal [25] studied congestion games with a
finite number of players. In addition, several authors have considered non-atomic congestion games, where the ‘‘non-atomic’’
part refers to the assumption that there is a continuum of players, each controlling a negligible fraction of the overall load
on the system (see, e.g., [28,29]), or, differently, to the assumption that a playermay take continuous decisions, representing
the amount of congestion contributed by the player to each service provider [18].

However, the above settings donot take into consideration thepossibility that resourcesmay fail to execute their assigned
tasks. Typically, the resources aremachines, computers, service providers, communication lines etc. These kinds of resources
are obviously prone to failures because of breakage or for any other reasons. Thus, the issue of failures should not be ignored.

The notion of failures is widely used in the field of distributed systems. In a lot of situations failing components of the
system may be viewed as playing against its correctly functioning parts. The issue of failures in game-theoretic setting is
extensively discussed by Linial [13]. In another line of research, [23] introduced the notion of fault tolerant mechanism
design which extends the standard game-theoretic framework of mechanism design to allow for uncertain executions. In
the above settings failing components are self-motivated or malicious players. In our work, we initiate an investigation of
failures in congestion games, where not the players, but the resources they share may fail.

In a congestion game with failures (CGF), players share a common set of resources, or service providers,1 where each
service provider (SP) may fail with some known probability. For reliability reasons, a player may choose a subset of the
service providers in order to try and perform his task. Therefore, each player’s set of pure strategies coincide with the power
set of the set of SPs, and the total load on the system is not known in advance, but strategy-dependent. The cost for a player
for successful completion of his task is theminimum of the costs of his successful attempts. The cost function associatedwith
each SP is not universal but player-specific. That is, the (dis-)utility to a player depends not only on the number of players
using the same SP, but also on the identity of the player in question. Congestion games with player-specific cost functions
were first studied by Milchtaich [14]. This generalization was, however, accompanied by the assumption that each player
chooses only one resource.

The contribution of this paper is both conceptual and technical. On the conceptual level we introduce a model to handle
strategic behavior in congestion settings with unreliable resources. In addition, we provide several basic results on the
existence of various forms of equilibria in such settings.

It is known that any congestion game possesses a potential function, and as a result possesses a pure strategy
equilibrium [17]. Our first technical contribution is by showing that although CGFs do not, in general, admit a potential
function, and thus are not isomorphic to congestion games, they always possess a pure strategy Nash equilibrium.Moreover,
though, as we show, an arbitrary improvement dynamics may cycle (that is, the finite improvement property (FIP) does
not hold), the convergence to an equilibrium is guaranteed from any strategy profile if the players make best response
improvement steps. We also develop an efficient algorithm for computing a pure strategy equilibrium and prove that the
SPs’ congestion experienced in different Nash equilibria is (almost) unique. Furthermore, we consider the existence of a
semi-strong equilibrium in congestion games with failures. In a strong equilibrium [2] it is required that deviations by any
subset of the players would not be beneficial to them. This is a muchmore demanding concept than the Nash equilibrium, in
which only unilateral deviations are considered. In a semi-strong equilibrium we require that if there exists such beneficial
group deviation, then it should itself not be stable: there will exist a single player among the deviators, who can gain by
deviating from the deviating strategy.2 We show that although strong equilibrium does not, in general, exist in CGFs, every
Nash equilibrium strategy profile that minimizes the sum of the players’ disutilities is a semi-strong Nash equilibrium.

1 In this paper, we use the terms resources and service providers interchangeably.
2 Semi-strong equilibrium is a more demanding concept than coalition-proof equilibrium [5,6]. In a coalition-proof equilibrium a deviation by a subset

of the players is considered stable, if there is no stable deviation from it by any subset of it.
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We devote special attention to the subclass of symmetric CGFs. We use this interesting subclass in order to differentiate
between different types of equilibria according to their social disutility (the sum of the players’ disutilities). We give a
characterization of the best and worst Nash equilibria with respect to the social disutility, present algorithms for their
construction, and compare the social disutilities of the players at these points. An interesting property is that while in worst
equilibrium some of the players exploit the system, the structure of the best equilibrium is such that the system exhibits
fair allocation of resources to the players.3

Wealso consider the ratio between the social disutilities incurred by players in an equilibriumand in an optimal outcome.
The worst possible ratio between equilibrium and optimum disutilities (dubbed ‘‘the price of anarchy’’ [19]) was proposed
by Koutsoupias and Papadimitriou [11] as a measure of the inefficiency of selfish behavior in noncooperative systems, and
was extensively studied for nonatomic congestion games [8,27,28,26]. Recently, Awerbuch et al. [4] and, independently, [7]
provided bounds for the price of anarchy in finite congestion games with linear cost functions. We show that in congestion
games with failures even the best possible ratio between equilibrium and optimum disutilities (termed the ‘‘price of
stability’’ in [1]) depends on the parameters of the game and cannot be bounded by a constant value, even for very simple
(e.g., linear) cost functions. As a result, the price of anarchy is also unbounded.

The paper is organized as follows. In Section 2 we define our model. In Section 3 we show that CGFs do not admit a
potential function and the finite improvement property (FIP). In Section 4we prove the convergence of best replies, implying
the existence of a pure strategyNash equilibrium. In addition,we provide an efficient algorithm for computing and analyzing
Nash equilibrium uniqueness properties. In Section 5 we show that every best Nash equilibrium of any given CGF is semi-
strong. Section 6 is devoted to symmetric CGFs where we characterize best and worst Nash equilibria in symmetric CGFs,
present algorithms for their construction and provide an upper bound on the ratio between them. We also discuss the (best
and worst possible) ratio between social disutility in Nash equilibrium and optimum social disutility in these games. We
conclude by drawing a few directions for further research in Section 7.

2. The model

A CGF is defined as follows. Let N be a set of n ∈ N players, and letM be a set ofm ∈ N service providers, each associated
with a failure probability. We assume that the failure or success of a particular service provider is independent of the failure or
success of other SPs. Each player has a taskwhich can be carried out by any of the SPs. The service cost for player i for utilizing
service provider e is a nonnegative nondecreasing function lie : {1, . . . , n} → R+ of the congestion experienced by e; thus,
the greater is the congestion experienced by the service provider, the longer it takes to complete the task execution and, as
a result, the greater is the cost incurred by the player. Player i’s disutility from a successful task completion is determined
by the minimum of the service costs of the SPs he has chosen which did not fail. Player i’s disutility from an uncompleted
task is evaluated by his (nonnegative) incompletion cost (denoted byWi). This is defined more precisely below.

The success probability of e ∈ M is denoted by se(se ∈ (0, 1)). Similarly, fe = 1 − se stands for the failure probability of e.

Remark 1. The CGF-model can be extended to allow congestion-dependent failure/success probabilities, while leading to
similar results (see Remark 8 in Section 4 for justification). We define these probabilities as constants solely in order to
simplify the exposition and presentation of our results.

The set of pure strategies Σi for player i ∈ N is the power set of the set of SPs: Σi = P(M). Given a subset of players S ⊆ N ,
the set of strategy combinations of the members of S is denoted by ΣS = ×i∈S Σi, and the set of strategy combinations of
the complement subset of players is denoted by Σ−S(Σ−S = ΣNrS = ×i∈NrS Σi). The set of pure strategy profiles of all the
players is denoted by Σ(Σ = ΣN).

Let σ = (σ1, . . . , σn) ∈ Σ be a combination of pure strategies. The (m-dimensional) congestion vector that corresponds
to σ is hσ

= (hσ
e )e∈M , where hσ

e = |{i ∈ N : e ∈ σi} |. The outcome from σ is the subset X ⊆ M of the service providers
that have successfully executed their assigned tasks. For any player i ∈ N , if σi ∩ X = ∅ then the disutility of player i from
a strategy profile σ and the outcome X, πi(σ , X), is equal to his incompletion cost, Wi; otherwise, if X ≠ ∅, then the i’s
disutility is determined by theminimum among the service costs of his successful resources:

πi(σ , X) = min
e∈σi∩X

lie(h
σ
e ).

Given a strategy profile σ , letX(σ ) denote the random variable representing the subset of successful SPs;X(σ ) is distributed
over the power set of the set of chosen service providers, P(∪i∈N σi), and its distribution is determined by (fe)e∈∪i∈N σi . The
expected disutility of player i from strategy profile σ , Πi(σ ), is therefore:

Πi(σ ) = Wi

∏
e∈σi

fe +

−
A∈P(σi)r{∅}

min
e∈A

lie(h
σ
e )

∏
e∈A

se
∏

e∈σirA

fe.

We use the convention that
∏

e∈∅ fe = 1. Hence, if agent i chooses an empty set σi = ∅ (does not assign his task to any
resource), then his expected disutility, Πi(∅, σ−i), equals his incompletion cost, Wi. The aim of each player is to minimize
his own expected disutility.

3 The issue of fairness in congestion settings is the topic of study of several papers (see e.g. [9,12]).
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Wenote that the service cost of a particular resource to player imaybehigher thanhis incompletion cost,Wi. For instance,
the service cost may consist of two types of costs—an execution cost, bie, that represents a cost of processing player i’s task
by service provider e, and a fixed completion cost, a, that models for example a payment to the network administrator for
successful execution of a task, by one or more of the service providers. It is natural to assume that bie(·) is a nonnegative
nondecreasing function satisfying bie(k) ≤ Wi for all i ∈ N, e ∈ M and 1 ≤ k ≤ n. This means that the execution of a task
does not cost a player more than its failure. W.l.o.g., one can also assume that for any player i his incompletion cost Wi is
higher than the fixed completion cost a. Otherwise, the obvious dominant strategy of player i is to avoid assigning his task
to any service provider. Despite the fact that a ≤ Wi and bie(k) ≤ Wi for all 1 ≤ k ≤ n, the service cost, lie(k) = bie(k) + a,
might be higher than Wi. However, it is obvious that if lie(1) ≥ Wi for all e ∈ M , then the dominant strategy of player i is
to avoid assigning his task to any service provider, i.e. in this case player i can be actually ignored. Therefore, w.l.o.g., we
assume that such cases do not take place.

Remark 2. We note that CGFs with constant failure probabilities (i.e., fe(k) = fe for all e ∈ M and k = 1, . . . , n) and
a single service provider (m = 1) can be reduced to congestion games with player-specific payoff functions presented
in [14]. If player i chooses strategy σi = ∅, then his disutility is the constant Wi (Note that Wi is player-specific);
otherwise, if he submits his task to the single available service provider, e, then his expected disutility is given by Πi(σ ) =

Wife+lie(h
σ
e )(1−fe), which is a nondecreasing, player-specific function of the congestion on e. This is equivalent to the choice

between two resources, when the cost of each resource is a (possibly constant) nondecreasing, player-specific function of
its congestion, which is exactly the case in [14]. Observe that Πi(·) is nondecreasing since lie(·) is nondecreasing and fe is a
constant value. However, if failure probabilities depend on the congestion, then Πi(·) may be non-monotonic.

Applying Remark 2, when discussing CGFs with constant failure probabilities, we can restrict our attention to the case
with 2 or more resources (m ≥ 2).

3. The non-existence of a potential function and of a FIP

In this section we investigate the basic properties of congestion games with failures. Specifically, we observe that no
CGF with symmetric failure probabilities and service cost functions admits an (exact) potential function, thus implying that
the class of CGFs lies beyond the class of congestion games. Furthermore, we show that these games, in general, do not
possess even a weaker — generalized ordinal — potential, whose existence in a game is equivalent to the so-called ‘‘finite
improvement property’’ (FIP) that guarantees that any sequence of one-sided improving steps converges to a pure strategy
Nash equilibrium from any initial combination of players’ strategies. We present an example of a CGF in which such a
sequence of improvements has a cycle.

3.1. Exact potential

Monderer and Shapley [17] introduced the notion of potential function and defined a potential game to be a game which
possesses a potential function. A potential function (or, an exact potential) is a real-valued function over the set of pure
strategy profiles, with the property that the gain (or loss) of a player shifting to another strategy while keeping the other
players’ strategies unchanged is equal to the corresponding increment of the potential function. That is, if Γ is a game in
strategic form with a finite number of players, where the set of strategies of player i is Σi, the set of strategy profiles is
Σ = ×i Σi, and the payoff function of player i is Πi : Σ → R, then a function P : Σ → R is an (exact) potential for Γ if for
every player i and for every σ−i ∈ Σ−i,

Πi(σ−i, x) − Πi(σ−i, y) = P(σ−i, x) − P(σ−i, y),
for any x, y ∈ Σi. The authors [17] showed that the classes of finite potential games and congestion games coincide.

In this sectionwe show that the class of CGFs does not possess a potential function, and therefore is not isomorphic to the
class of congestion games. In particular, we show that no symmetric CGF (inwhich the failure probabilities, the incompletion
costs and the service costs do not depend on the service provider or the player identity)4 admits a potential function. To prove
this statement we employ the following technical characterization of a potential game by Monderer and Shapley [17]: if Γ
is a game in strategic form with Πi : Σ → R the payoff function of player i, then Γ is a potential game if and only if for
every i, j ∈ N , for every z ∈ Σ−{i,j}, and for every xi, yi ∈ Σi and xj, yj ∈ Σj,

Πi(α) − Πi(β) + Πj(β) − Πj(γ ) + Πi(γ ) − Πi(δ) + Πj(δ) − Πj(α) = 0,

where α = (xi, xj, z), β = (yi, xj, z), γ = (yi, yj, z), δ = (xi, yj, z).5
If in a CGF all service cost functions are constant (we refer to such games as ‘‘degenerate’’), then the above characterization

easily implies the existence of a potential function (this follows from the fact that the expected disutility of each player in
this case is independent of the choices of the other players). In other cases, a potential function does not necessarily exist in
CGFs. In particular, it never exists in symmetric CGFs.

4 See Section 6 for a detailed discussion.
5 α → β → γ → δ → α is termed ‘‘a simple closed path’’ of length 4.
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Fig. 1. The non-existence of a potential function in symmetric CGFs.

Fig. 2. Players’ payoffs in Γ .

Proposition 3. A non-degenerate symmetric CGFswith constant failure probabilities does not possess an exact potential function.

Proof. Let Γ be a non-degenerate symmetric CGF with f denoting the failure probability of each resource, W standing for
the incompletion cost of each player, and l(·) representing the congestion-dependent service cost of each resource to each
player. Let k ∈ {1, . . . , n−1} be an arbitrary integer satisfying l(k) < l(k+1), and consider the simple closed path of length
4 which is formed by α = (∅, {e2}, z), β = ({e1}, {e2}, z), γ = ({e1}, {e1, e2}, z), δ = (∅, {e1, e2}, z), where z ∈ Σ−{1,2}
satisfies hz

e1 = hz
e2 = k − 1. That is, each SP is chosen by exactly k − 1 players, excluding players 1 and 2. For instance, let

k− 1 players in N r {1, 2} play {e1, e2} and all the others play ∅. The expected disutilities of the deviators (players 1 and 2)
on the path α → β → γ → δ → α are presented in Fig. 1. Exploring Fig. 1, we get

Π1(α) − Π1(β) + Π2(β) − Π2(γ ) + Π1(γ ) − Π1(δ) + Π2(δ) − Π2(α) = (1 − f )2(l(k + 1) − l(k)) > 0,

which implies the non-existence of a potential function. �

Note that Proposition 3 is also true for many CGFs with congestion-dependent failures but not to all such games. Also the
proposition applies to CGFs with symmetric service cost functions and failure probabilities but player-specific incompletion
costs (the same proof, with the changes required due to player-specific incompletion costs, is valid).

Remark 4. Note that since there is no potential function in symmetric CGFs, its absence is a result of the added features
of the CGF’s setting (namely, the resource failures and the minimum operator in the players’ objectives), and not due to
the player-specific service cost functions. Moreover, some, but not many, non-degenerate CGFs with player-specific service
costs possess a potential function. Such a game is demonstrated by the following example.

Example 5. Let Γ be a CGF in which two players N = {1, 2} share a set of two resources M = {e1, e2}. The incompletion
cost of each player is W = 10, the failure probability of each resource is f = 0.5 and the service cost function is given by
l1e1(1) = 2, l1e1(2) = 4; l2e1(1) = 8, l2e1(2) = 10; and l1e2(1) = l1e2(2) = l2e2(1) = l2e2(2) = 10. Fig. 2 presents the payoff matrix
of the game. A potential function of the game is presented in Fig. 3.

By exploring Figs. 2 and 3, one can verify that for any two strategy profiles differing by the choice of exactly one player,
the difference in the payoff of that player between the two profiles equals the corresponding increment in the function
presented in Fig. 3. Therefore, this function is a potential function.

One can easily see that any local optimum of a potential function of a finite potential game is a Nash equilibrium strategy
profile as no player can improve his payoff by a unilateral deviation from this profile. Moreover, any sequence of myopic



M. Penn et al. / Discrete Applied Mathematics 159 (2011) 1508–1525 1513

Fig. 3. A potential function of Γ .

improving deviations will converge to such a local optimum, regardless of where the process has started. This is called the
finite improvement property [17].

3.2. (Generalized) ordinal potential and the FIP

Note that the convergence of a myopic improvement dynamics is guaranteed even by a weaker type of a potential
function, for which it is only required that an increase in the utility of a player who unilaterally shifts to another strategy
implies an increase in the potential function; thus, the potential increases along the improvement path, and the finite
improvement property holds. This type of a potential is termed generalized ordinal potential, and it has been shown that its
existence in a game is equivalent to the FIP [17]. Below we show that this property, in general, does not hold for congestion
games with failures.

Theorem 6. There exist CGFs with no finite improvement property.

Proof. Let Γ be a CGF with 2 players N = {1, 2} sharing 4 resources M = {e1, e2, e3, e4}, the failure probability of each
of which is given by f < 1. The incompletion costs of both players are W1 = W2 = 2. The service costs are given
by l1e1(1) = l2e4(1) = 1, l1e1(2) = l2e4(2) = 3, and the rest take value 2 (i.e., for any k = 1, 2 we have lie(k) = 2 for
e = e2, e3, e4 when i = 1, and for e = e1, e2, e3 when i = 2). Consider the cycle of better replies which is formed by
α = ({e1, e2, e3, e4}, {e1, e3}) → β = ({e2, e3}, {e1, e3}) → γ = ({e2, e3}, {e2, e4}) → δ = ({e1, e2, e3, e4}, {e2, e4}) → α
(see Fig. 4).

The expected disutilities of the deviators satisfy the following:

Π1(α) = 2 + f 3(1 − f ) > 2 = Π1(β)

Π2(β) = 2 > 1 + f = Π2(γ )

Π1(γ ) = 2 > 1 + f = Π1(δ)

Π2(δ) = 2 + f (1 − f ) > 2 = Π2(α),

implying that α → β → γ → δ → α is indeed a better reply cycle.6 �

Thus, CGFs have no FIP and have no generalized ordinal potential function.

4. Pure strategy Nash equilibria and best reply dynamics

We have shown in Section 3 that congestion games with failures have no FIP and no generalized ordinal potential
function. Note, however, that this fact, in general, does not contradict the existence of an equilibrium in pure strategies
or the convergence of particular one-sided better reply dynamics (e.g., best responses). In this section, we prove that any
sequence of best responses always converges in CGFs, thus implying the existence of a pure strategy Nash equilibrium
in these games. Moreover, we provide an efficient algorithm for its construction, and show that given a CGF, its different
equilibria correspond to (almost) the same congestion vector.

4.1. Existence and convergence

We start by proving an intuitive and useful property of CGFs (see Proposition 7) which is the basis of our algorithm for
constructing a pure strategy Nash equilibrium.

6 Though the first inequality is not satisfied by every f , it does hold for all f ≤
3
4 ; the rest are true for any f < 1.
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Fig. 4. Example for the CGF without FIP.

Proposition 7. Let σ ∈ Σ be a pure strategy profile of a given CGF, and let hσ be its corresponding congestion vector. The strategy
profile σ is a Nash equilibrium if and only if the following conditions are satisfied for all i ∈ N:

(i) lie(h
σ
e ) ≤ Wi ∀e ∈ σi;

(ii) lie(h
σ
e + 1) ≥ Wi ∀e ∉ σi. (1)

Note that if hσ
e = n then {i ∈ N : e ∉ σi} = ∅, and (1)(ii) is satisfied vacuously.

Proof. (⇒) Suppose σ is a Nash equilibrium pure strategy profile then we prove that σ satisfies inequalities (1).

(i) Suppose there is a player i ∈ N such that the subset Li = {e ∈ σi : lie(h
σ
e ) > Wi} of his chosen resources is not empty.

Let a ∈ Li be such a resource with maximum service cost, that is, a ∈ argmaxe∈Li l
i
e(h

σ
e ) (note that since lie(h

σ
e ) ≤ Wi

for all e ∈ σi r Li, we have that lia(h
σ
a ) ≥ lie(h

σ
e ) for all e ∈ σi). We show below that Πi(σ ) > Πi(σ−i, σi r {a}),

i.e. player i can improve his expected disutility by removing resource a from his strategy, which contradicts σ ∈ NE.
To prove this we show, on a sample path basis, that the above deviation is profitable for i. That is, for each realization of
the resource failures, player i’s disutility obeying his modified strategy, is at most as in his original strategy, and there
exists a realization forwhich his disutility is strictly smaller. For any given realization, let X denote the outcome from the
strategy profile σ—the subset of SPs that have succeeded to execute their tasks, and let πi(σ , X) be player i’s disutility
from σ and X . If all SPs have failed to execute their tasks (the subset of successful resources is empty, X = ∅) then
πi(σ , ∅) = πi((σ−i, σi r a), ∅) = Wi. If X = {a}, then player i benefits from removing a from his set of utilized SPs:
πi((σ−i, σi r {a}), X) = Wi < lia(h

σ
a ) = πi(σ , X). If X ≠ ∅, {a}, then πi((σ−i, σi r {a}), X) = mine∈(σir{a})∩X lie(h

σ
e ) =

mine∈σi∩X lie(h
σ
e ) = πi(σ , X). Therefore, Πi(σ−i, σi r {a}) < Πi(σ ), contradicting σ being a Nash equilibrium strategy

profile.
(ii) Suppose there are player i and service provider a ∈ M r σi such that lia(h

σ
a + 1) < Wi. We show below that

Πi(σ ) > Πi(σ−i, σi ∪ {a}), which contradicts σ ∈ NE.
We denote (σ−i, σi ∪ {a}) by σ ′. If all SPs have failed to execute their assigned tasks, then the i’s disutility from both

σ and σ ′ is equal to his incompletion cost, Wi. If all the resources, excluding resource a, have failed (X = {a}), then the
i’s disutility from σ ′ is less than the one from σ : π(σ ′, X) = lia(h

σ ′

a ) = lia(h
σ
a + 1) < Wi = π(σ , X). If X ≠ ∅, {a}, then

π(σ ′, X) = mine∈(σi∪{a})∩X lie(h
σ ′

e ) ≤ mine∈σi∩X lie(h
σ
e ) = π(σ , X) (note that hσ ′

e = hσ
e for all e ∈ M r {a}). Therefore,

Πi(σ
′) < Πi(σ ), contradicting σ being a Nash equilibrium strategy profile.

(⇐) Let σ be a strategy profile that satisfies conditions (1). We prove that σ is a Nash equilibrium, that is, Πi(σ ) ≤

Πi(σ−i, σ
′

i ) for each player i ∈ N and for all σ ′

i ∈ Σi.
Let i ∈ N be any player and let σ ′

i ∈ Σi be any strategy of player i. We denote (σ−i, σ
′

i ) by σ ′ and note that

hσ ′

e =


hσ
e e ∈ σi ∩ σ ′

i ;

hσ
e + 1 e ∈ σ ′

i r σi.
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We show that for any realization of the resource failures, player i’s payoff from obeying σ is no worse than his payoff
from σ ′, implying σ is an equilibrium. For a given realization, let X represent the (possibly empty) subset of successful
service providers and note that πi(σ , X) ≤ Wi (this is since if σi ∩ X = ∅ then πi(σ , X) = Wi; otherwise, πi(σ , X) =

mine∈σi∩X lie(h
σ
e ) ≤(1)(i) Wi). If σi ∩ σ ′

i ∩ X = ∅ then πi(σ
′, X) ≥ Wi ≥ πi(σ , X) (if σ ′

i ∩ X = ∅ then πi(σ
′, X) = Wi;

otherwise, πi(σ
′, X) = mine∈σ ′

i ∩X lie(h
σ ′

e ) ≥(1)(ii) Wi). Otherwise, if σi ∩ σ ′

i ∩ X ≠ ∅, then πi(σ
′, X) = mine∈σ ′

i ∩X lie(h
σ ′

e ) =

(1) mine∈σi∩σ ′
i ∩X lie(h

σ
e ) ≥ mine∈σi∩X lie(h

σ
e ) = πi(σ , X) (the equality holds since lie(h

σ
e ) ≤(1)(i) Wi ≤(1)(ii) lie′(h

σ
e′ + 1) = lie′(h

σ ′

e′ )

for any e ∈ σi ∩ σ ′

i and e′
∈ σ ′

i r σi; the inequality is due to σi ∩ σ ′

i ∩ X ⊆ σi ∩ X). Therefore, Πi(σ ) ≤ Πi(σ
′) for all i ∈ N

and σ ′

i ∈ Σi, as claimed. That is, σ is a Nash equilibrium strategy profile. �

Remark 8. Proposition 7 reflects the idea that a player’s decision regarding any SP, that is, to sign up or not to an SP, in an
equilibrium outcome is independent of his decisions regarding other SPs, and is a function of his incompletion cost and the
service cost of that SP. In addition, the proposition implies that the equilibrium outcomes are independent of the values of
resource failure probabilities. Thus, Proposition 7 also holds for CGF-modelswith congestion-dependent failure probabilities.

Based on Proposition 7, at any strategy profile of a given CGF, a best response of a player to his opponents’ chosen
strategies is uniquely defined by his incompletion cost and the congestion on the resources caused by the rest of the players.
We now show that any sequence of best replies always converges to a Nash equilibriumprofile, regardless of the initial point
at which the improvement process has started. This property is termed the finite best response property (FBRP) [14].

Theorem 9. Every congestion game with failures has the FBRP.

Proof. On the contrary, assume there exists a game with a cyclic path of best responses. Fix such a game and such a cycle,
and an arbitrary service provider, e, which is involved in this cycle. Consider changesmade to e along the best response path;
since changes made to other service providers have no effect on e, without loss of generality, we can focus on only those
steps at which a player have added or dropped resource e. Note that since the game is finite with n players, the cycle must
include both adds and drops, so fix any add with resource e and let it be the starting point, denoted σ 0.

Consider the function PBR(σ ) = L ·Wmax(σ )+nmax(σ ), where L is a large number so that mini,j∈N:Wi≠Wj |Wi −Wj| ·L > n;
Wmax is the maximal incompletion cost among all users of e:Wmax(σ ) = maxi∈N:e∈σi Wi; and nmax is the number of e’s users
with the maximal incompletion cost: nmax(σ ) = |{i ∈ N|e ∈ σi,Wi = Wmax(σ )}|.

First, observe that the function PBR does not decrease along the best response path. Recall that at step σ 0 some player
adds resource e. By Proposition 7, the incompletion cost of the deviator has to be at least as great as the service cost of e at σ 0.
By definition, the same holds for any player iwithWi = Wmax(σ 0). Hence, no such player will drop resource e (meaning that
Wmax, nmax, and hence PBR, will not decrease), unless its service cost exceedsWmax(σ 0). But for this to happen, a player with
a higher incompletion cost must add resource e, implying that Wmax strictly increases. Note that the terms in the function
PBR are scaled in a way that any possible change in Wmax is greater by the absolute value than the total number of players,
n. So, any timeWmax grows, the function PBR grows too, although nmax could decrease. Next, we show that either PBR strictly
increases along the improvement path, or there is another (very similar) function that does. This will complete the proof.

If PBR is strictly increasing, we are done. So assume otherwise. Recall that the function can only stay unchanged if none of
the nmax(σ 0) users of ewith themaximal incompletion cost at σ 0 made any change along the improvement path. Therefore,
we can ‘‘ignore’’ those players and either remove them from the game andmodify the service cost functions of the rest of the
players accordingly, or, alternatively, consider a function PBR

(2)(σ ) = L ·Wmax
(2) (σ )+nmax

(2) (σ ), whereWmax
(2) and nmax

(2) are defined
in a similar way, but for the 2nd highest incompletion cost, and repeat the argument with respect to PBR

(2). Since the game is
finite, there exists PBR

(k) for k = 1, . . . , n (defined similarly for the kth highest incompletion cost) that strictly increases along
the cycle, in contradiction to the contrary assumption. �

Theorem 9 implies that every CGF possesses a pure strategy Nash equilibrium, and it can be achieved by a sequence of
best replies. However, it gives no guarantees on how long such an improvement dynamics may take. In what follows, we
strengthen the result of Theorem 9 by showing that fixing the initial strategy profile and the order of players in which they
apply their best responses, one can easily obtain an equilibrium in time, polynomial in the number of players and service
providers.

4.2. Efficient construction

Wedevelop theNE-Algorithm for constructingNash equilibria in CGFs. The algorithm is initializedwith an empty strategy
set for each player. At each iteration, the algorithm selects (arbitrarily) a service provider. Then it sorts the players in a non-
increasing order of theirmaximumcongestion forwhich the service cost of a player for using this service provider is less than
his incompletion cost. If the ordering number of the player is at most the above value of the congestion, then the algorithm
adds the selected service provider to the player’s strategy set. In such a way, at the end of the algorithm, for each i, the
service cost of player i for using any of the SPs in σi is lower than Wi, while utilizing any other SP costs him more. Then, by
Proposition 7, in such situations no player wishes to deviate (unilaterally) from his strategy. The NE-Algorithm is presented
below.
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4.2.1. NE-algorithm

Initialization: For all 1 ≤ i ≤ n, set σi := ∅;

Main For all e ∈ M:
Step: (1) Sort the players in a non-increasing order of ki

e,
where

ki
e =


0 if {k : Wi > lie(k), k = 1, . . . , n} = ∅
max{k : Wi > lie(k), k = 1, . . . , n} otherwise;

Let ϕe : N → {1, . . . , n}
i → ie = ϕe(i)
be the corresponding permutation function;

(2) For ie = 1 to n:
if ie ≤ ki

e, then σi := σi ∪ {e}.

Theorem 10. The NE-algorithm finds a pure strategy Nash equilibrium in a given CGF with time complexity of O(mn log n).

Proof (Validity). Let us first briefly describe the intuition behind the proof. For any resource e and for any player iwe show
that if the algorithm assigns player i’s task to resource e then the total congestion experienced by e in the outcome of the
algorithm is at most ki

e. By the definition of ki
e, player is service cost for using resource e is less than the Wi, as required.

Otherwise, if the algorithm does not assign player i’s task to resource e, then we show that the total congestion on e in the
algorithm’s outcome, increased by 1, is greater than ki

e, implying that the service cost of e is at least Wi, as required. The
formal proof is presented below.

Let σ = (σi)i∈N be the combination of pure strategies constructed by the NE-Algorithm, and let hσ
= (hσ

e )e∈M be the

corresponding congestion vector. Choose any service provider e and any player i. If e ∈ σi then hσ
e ≥ 1 and ki

e ≥ kϕ−1
e (x)

e ,
where

x = max
j∈N

{ϕe(j) : e ∈ σj} = hσ
e .

Since e ∈ σx, then kϕ−1
e (x)

e ≥ x and ki
e ≥ kϕ−1

e (x)
e ≥ x = hσ

e . By the definition of ki
e, for all 1 ≤ k ≤ ki

e, we have Wi > lie(k).
Thus, since 1 ≤ hσ

e ≤ ki
e, we get Wi > lie(h

σ
e ).

If e ∉ σi then ki
e ≤ kϕ−1

e (y)
e , where

y = min
j∈N

{ϕe(j) : e ∉ σj} = max
j∈N

{ϕe(j) : e ∈ σj} + 1 = hσ
e + 1.

Since e ∉ σy, then kϕ−1
e (y)

e < y, and ki
e ≤ kϕ−1

e (y)
e < y = hσ

e + 1. By the definition of ki
e, for all k > ki

e, we have Wi ≤ lie(k).
Thus, since hσ

e + 1 > ki
e, we getWi ≤ lie(h

σ
e + 1).

Hence, the congestion vectorhσ satisfies the conditions in (1). Therefore, by Proposition 7,σ is aNash equilibriumstrategy
profile.
Complexity The number of iterations of the NE-algorithm is m, where each iteration takes O(n log n) operations. Hence, the
time complexity of the NE-algorithm is O(mn log n). �

Therefore, a pure strategy Nash equilibrium in a given CGF is easy to find. It turns out, that equilibrium points in CGFs
have some additional nice properties, as is shown in the sequel.

4.3. (Almost) Uniqueness

We now discuss some uniqueness properties of Nash equilibria in CGFs. More precisely, we consider the uniqueness
of congestion experienced by any service provider in any equilibrium. The uniqueness of equilibrium may fail due to
indifference in the choice between strategies. Hence we confine our attention to games with strictly increasing service cost
functions. We show that in such CGFs the difference between the congestion experienced by any SP in any two different
Nash equilibria is bounded by 1. Furthermore, in games with lie(·) ≠ Wi, for all e and i, any SP has the same congestion in all
equilibrium profiles. In particular, all generic CGFs have this uniqueness property. Let NE ⊆ Σ be a set of Nash equilibrium
pure strategy profiles. Then,

Proposition 11. Given a CGF, if for all e ∈ M and i ∈ N, lie(·) is a strictly increasing monotone function, then for any pair of
equilibrium profiles σ 1, σ 2

∈ NE, the inequality |hσ 1
e − hσ 2

e | ≤ 1 holds for all e ∈ M.
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Proof. Let σ 1, σ 2
∈ NE be Nash equilibrium strategy profiles, and assume that hσ 1

e > hσ 2
e + 1 for some e ∈ M . Then,

there is a player i such that e ∈ σ 1
i , but e ∉ σ 2

i . By Proposition 7, for player i we have lie(h
σ 1
e ) ≤ Wi and lie(h

σ 2
e + 1) ≥ Wi.

Therefore, lie(h
σ 1
e ) ≤ lie(h

σ 2
e + 1). Now, hσ 1

e > hσ 2
e + 1 coupled with the monotonicity of lie(·), leads to lie(h

σ 1
e ) > lie(h

σ 2
e + 1),

in contradiction to lie(h
σ 1
e ) ≤ lie(h

σ 2
e + 1). �

It can be easily seen that if in addition to the requirements of Proposition 11, the cost function lie(·) satisfies l
i
e(k) ≠ Wi

for 1 ≤ k ≤ n, then all Nash equilibria of a given CGF correspond to the same congestion vector, i.e. the congestion of any
SP is fixed for all equilibrium points.

5. Semi-strong Nash equilibria in CGFs

In the previous sectionwe proved that CGFs, while not admitting a potential function, always possess a Nash equilibrium
in pure strategies. An equilibrium strategy profile has the property that, once it has been agreed upon, no player has an
incentive to deviate unilaterally. This interpretation has been criticized on various grounds (see, e.g., [3]). In particular, if the
coalition of the whole can communicate to agree on a particular strategy choice, then smaller coalitions may also be able
to communicate and coordinate their actions. According to this line of argument, one should not be satisfied with strategy
profiles that are immune only to individual deviations, but instead should insist also on immunity to deviations of coalitions.
These considerations have led to new solution concepts of strong Nash equilibrium [2] and coalition-proof Nash equilibrium
[5,6]. Milgrom and Roberts [16] focused on coalition deviations that are robust against further individual deviations. They
called the corresponding Nash equilibria strongly coalition proof. The same concept has been proposed by Kaplan [10], who
called the equilibria semi-strong.

Strong Nash equilibrium is a strategy profile for which there is no profitable deviation available to any coalition of
players. This requirement is too strong since the profile must be resistant to deviations which are not themselves resistant
to further deviations. The notion of coalition-proof Nash equilibrium, instead, requires only that a strategy profile be
immune to profitable deviations which are self-enforcing.7 Strongly coalition-proof (or, semi-strong) Nash equilibrium is a
strategy profile for which there are no profitable coalition deviations which are robust against further individual deviations
(we define these equilibria more precisely below). Given a semi-strong Nash equilibrium, one expects no coalition
deviations, since any such deviation is not an equilibrium among the members of coalition.8

In this section, we show the existence of semi-strong Nash equilibria in the class of CGFs. Moreover, we show that every
best Nash equilibrium of a given CGF is semi-strong.

Definition 12. Let Γ = (N, Σ, (Πi(·))i∈N) be a game in strategic form, where N denotes the set of players, Σ denotes the
set of strategy profiles, andΠi denotes the disutility function of player i ∈ N . A profile σ is a semi-strong Nash equilibrium
if

(i) σ is a Nash equilibrium of Γ , and
(ii) for every S ⊆ N, S ≠ ∅, and everyNash equilibriumρS ofΓ S,σ , whereΓ S,σ

= (S, (Σi)i∈S, (Πi(σ−S, ·))i∈S) is the reduced
game of Γ w.r.t. S and σ , there exists i ∈ S such that Πi(σ ) ≤ Πi(ρS, σ−S).

We restrict our attention to CGFs with service cost functions satisfying lie(k) ≠ Wi, for all e ∈ M, i ∈ N , k ∈ {1, . . . , n}.
That is, we assume that a player is never indifferent between adding or ignoring a particular service provider. Let σ be a Nash
equilibrium strategy profile that minimizes the sum of the players’ disutilities, then σ is termed a best Nash Equilibrium. (See
Section 6.2 for a detailed discussion on best Nash-equilibria.) The following theorem states that any best Nash Equilibrium
is semi-strong.

Theorem 13. Let G be a CGF satisfying lie(k) ≠ Wi, for all e ∈ M, i ∈ N, k ∈ {1, . . . , n}, and let σ be a best Nash equilibrium.
Then, σ is a semi-strong Nash equilibrium of G.

Proof. Assume on the contrary that there exists S ⊆ N, S ≠ ∅, and a Nash equilibrium ρS of Γ S,σ such that Πi(ρS, σ−S) <
Πi(σ ), for all i ∈ S. Since ρS is a Nash equilibrium of Γ S,σ , then, by Proposition 7, for all i ∈ S,

(i) lie(h
(ρS ,σ−S )
e ) < Wi ∀e ∈ ρi; (2)

(ii) lie(h
(ρS ,σ−S )
e + 1) > Wi ∀e ∈ M r ρi. (3)

If there exists a service provider e ∈ M such that h(ρS ,σ−S )
e < hσ

e , then there is a player i ∈ S with e ∈ σi r ρi. Hence,

h(ρS ,σ−S )
e < hσ

e ⇒ h(ρS ,σ−S )
e + 1 ≤ hσ

e ⇒ lie(h
(ρS ,σ−S )
e + 1) ≤ lie(h

σ
e ). (4)

7 A deviation is self-enforcing if there is no further self-enforcing and profitable deviation available to a proper sub-coalition of players.
8 Obviously, every strong equilibrium is semi-strong, and every semi-strong equilibrium is coalition-proof.
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Since σ is a Nash equilibrium of Γ and e ∈ σi, then by Proposition 7,

lie(h
σ
e ) < Wi ⇒ (4)lie(h

(ρS ,σ−S )
e + 1) < Wi,

in contradiction to e ∉ ρi and (3).
If there exists a service provider e ∈ M such that h(ρS ,σ−S )

e > hσ
e , then there is a player i ∈ S with e ∈ ρi r σi. Then,

h(ρS ,σ−S )
e > hσ

e ⇒ h(ρS ,σ−S )
e ≥ hσ

e + 1 ⇒ lie(h
(ρS ,σ−S )
e ) ≥ lie(h

σ
e + 1). (5)

Since σ is a Nash equilibrium of Γ and e ∉ σi, then by Proposition 7,

lie(h
σ
e + 1) > Wi ⇒ (5)lie(h

(ρS ,σ−S )
e ) > Wi,

in contradiction to e ∈ ρi and (2).
Otherwise, h(ρS ,σ−S )

e = hσ
e , for all e ∈ M . Then, Πi(ρS, σ−S) = Πi(σ ) for all i ∉ S and Πi(ρS, σ−S) < Πi(σ ) for all i ∈ S,

which implies
∑

j∈N Πj(ρS, σ−S) <
∑

j∈N Πj(σ ). That is, the sum of the players’ disutilities from (ρS, σ−S) is strictly less
than the one from σ . In addition, since ρS is a Nash equilibrium of Γ S,σ , then inequalities (2) and (3) hold for all i ∈ S; since
σ is a Nash equilibrium of Γ and h(ρS ,σ−S )

e = hσ
e for all e ∈ M , then Proposition 7 implies that (2) and (3) hold for all i ∉ S.

Thus, (2) and (3) hold for all i ∈ N , implying that (ρS, σ−S) is a Nash equilibrium of Γ (by Proposition 7), in contradiction to
σ being a best Nash equilibrium of Γ . �

6. Symmetric CGFs

In this section, we consider the properties of Nash equilibria in symmetric CGFs. In a symmetric CGF, the parameters of
the game do not depend on service provider or player identity, i.e. for all i ∈ N and e ∈ M we have Wi = W , fe = f , and
lie(k) = l(k), for all k ∈ {1, . . . , n}. Recall that if l(1) ≥ W then the dominant strategy of each player is to avoid assigning a
task. Therefore, it is assumed that l(1) < W .

First, we show that in symmetric CGFs all SPs have almost the same congestion at Nash equilibrium. Furthermore, we
characterize and compare best and worst equilibria in symmetric CGFs, and provide efficient simple algorithms for their
construction. We also evaluate the inefficiency of Nash equilibrium in these games by considering the (best and worst
possible) ratio between Nash equilibrium and optimum outcomes.

6.1. (Almost) Even congestion

We start by showing that as a result of the symmetry among service providers in symmetric CGFs, the SPs are (almost)
evenly congested in any equilibrium. Let k = max{k : l(k) < W , k = 1, . . . , n} and k∗

= max{k : l(k) ≤ W , k = 1, . . . , n}.
Then,

Proposition 14. Given a symmetric CGF, let σ ∈ NE be a Nash equilibrium strategy profile with its corresponding congestion
vector hσ . Then, k ≤ hσ

e ≤ k∗ for all e ∈ M.

Proof. Assume on the contrary that hσ
a < k for some a ∈ M . Then, hσ

a +1 ≤ k, implying l(hσ
a +1) < W (by themonotonicity

of l(·) and the definition of k). Since hσ
a < k ≤ n then a ∉ σi for some i ∈ N . Then, Proposition 7 implies l(hσ

a + 1) ≥ W , a
contradiction.

Assume now that hσ
b > k∗ for some b ∈ M . Then, l(hσ

b ) > W (by the monotonicity of l(·) and the definition of k∗). Since
hσ
b > k∗

≥ 1 then b ∈ σi for some i ∈ N . Then, Proposition 7 implies l(hσ
b ) ≤ W , a contradiction. �

Note that if l(·) strictly increases with the number of users then k∗
− k ≤ 1. Then, Corollary 15 follows directly from

Proposition 14.

Corollary 15. Given a symmetric CGF, if l(k) is a strictly increasing monotone function on the interval 1 ≤ k ≤ k∗, then at any
Nash equilibrium σ ∈ NE, the difference between the congestions of different SPs is bounded by 1, i.e. for all σ ∈ NE and for all
a, b ∈ M, the inequality |hσ

a − hσ
b | ≤ 1 holds.

As we can see, symmetric CGFs have the property that all resources suffer almost the same congestion, regardless of the
particular equilibrium the playersmay converge to. Hence, the load on the system is expected to be fairly distributed among
the resources.

6.2. Best and worst equilibria

Given aprofileσ , define the (expected) social disutilityΠ(σ ) as the sumof the players’ expecteddisutilities in this strategy
profile: Π(σ ) =

∑
i∈N Πi(σ ). Social disutility is a standard mean to measure the cost suffered by the society as a whole.
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A strategy profile that minimizes the social disutility over the set of strategy profiles is called a social optimum. A best (worst)
equilibrium is a strategy profile that minimizes (maximizes) the social disutility over the set of equilibrium strategies. Let
BNE ⊆ NE(WNE ⊆ NE) denote the subset of all best (worst) pure strategy Nash equilibria. The social disutility in a best
equilibrium describes the best result that can be obtained in a system with noncooperative selfish players. This notion is of
particular interestwhen there exists amediatorwho can suggest rational players a particular behavior. Such behavior should
be stable against unilateral deviations, but the mediator can choose it to be the best behavior among the stable points. The
worst equilibrium is of particular interest when no suchmediator exists, and one is interested in theworst rational behavior
the system may converge to.

In this section we characterize, construct and compare best and worst Nash equilibria in symmetric CGFs. Specifically,
we show that the values of the social disutility in best and worst equilibrium points are very close. The ratios between these
values and the optimum social disutility are discussed in the following subsection. We start by providing two lemmas that
will be needed in the sequel.

Lemma 16. Given a symmetric CGF, assume there exists σ ∈ Σ r {(∅, . . . , ∅)} with maxe∈M l(hσ
e ) ≥ W. Let a ∈

argmaxe∈M l(hσ
e ). Then, for any i ∈ N, σ̂ = (σ−i, σi r {a}) satisfies Π(σ̂ ) ≤ Π(σ ).

Proof. Let i ∈ N . If a ∉ σi, then clearly Π(σ̂ ) ≤ Π(σ ). Otherwise a ∈ σi and the strategy profile σ̂ is obtained from σ by
removing resource a from the strategy set of player i. As a result, the congestion on resource a is reduced by 1, and the other
resources’ congestion is unchanged. Then, by the monotonicity of l(·), the expected disutility of any player k ≠ i cannot
increase. It remains to show that player i’s expected disutility, Πi, does not increase, either.

For any realization of resource failures, as before, let X be the subset of all successful SPs. If a ∉ X then σ̂i∩X = (σir{a})∩
X = σi∩X , and henceπi(σ̂ , X) = πi(σ , X). Ifσi∩X = {a} then σ̂i∩X = ∅ andπi(σ̂ , X) = W ≤ l(hσ

a ) = πi(σ , X). Otherwise,
if a ( σi ∩ X then σ̂i ∩ X ≠ ∅ and πi(σ̂ , X) = mine∈σ̂i∩X l(hσ

e ) = mine∈(σir{a})∩X l(hσ
e ) = a∈argmaxe∈M l(hσ

e ) mine∈σi∩X l(hσ
e ) =

πi(σ , X). Therefore, the expected disutility of i satisfies Π(σ̂ ) ≤ Π(σ ), on a sample path basis. �

Lemma 16 reflects the simple idea that keeping resources with high service costs is not beneficial for the society. The
following lemma, Lemma 17, captures the idea that strategy profiles which are better for the society are also fair9 ones.

Lemma 17. Given a symmetric CGF, let σ ∈ Σ be a combination of strategies satisfying l(hσ
e ) ≤ W for all e ∈ M. If there are two

players i, j ∈ N such that |σi| > |σj| + 1, then the strategy profile σ̂ = (σ−{i,j}, σi r {b}, σj ∪ {b}), where b ∈ argmaxe∈σirσj h
σ
e ,

satisfies Π(σ̂ ) ≤ Π(σ ).

The proof of Lemma 17 is technical and relatively lengthy, therefore we have chosen to present it in the Appendix.
Now we are ready to study best and worst equilibria in symmetric games. Recall that k = max{k : l(k) < W , k =

1, . . . , n}, and let Σ∗
⊆ Σ be the subset of all pure strategy profiles satisfying the following conditions: for all σ ∈ Σ∗,

hσ
e = k ∀e ∈ M;

| |σi| − |σj| | ≤ 1 ∀i, j ∈ N. (6)

Assume Σ∗ is not empty and let σ ∈ Σ∗. Since the congestion on each service provider in σ equals k, then
∑

i∈N |σi| =

mk. Also, since inσ all the players use (almost) the samenumber of resources,σ has the following structure: x players choosemk
n


service providers and y players choose

mk
n


+ 1 service providers, where x and y satisfy the following equations:x


mk
n


+ y


mk
n


+ 1


= mk

x + y = n.

Therefore, the values of x and y are

x = n


mk
n


+ 1


− mk;

y = mk − n

mk
n


. (7)

Note that if n divides mk, then x = n, y = 0.
Using the above characterization of profiles in Σ∗, one can apply the following simple procedure to greedily allocate the

resources to the players to get such a profile, approving Σ∗ is not empty.

9 By ‘‘fair’’ we mean that the resources are evenly distributed among the players.
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6.2.1. BNE-procedure
Number the players (resp., resources) by 1, . . . , n (resp., 1, . . . ,m), and let x and y be given by (7). Assign the first

mk
n


resources to the first player. Then continue with the second player and assign him the next

mk
n


resources with the lowest

congestion, where the assignment is according to the resources’ numbers from the lowest to the highest. Continue until
you have assigned the allocated resources to the first x players,

mk
n


resources each. Proceed assigning the resources to the

remaining y players by assigning each player
mk

n


+ 1 resources.

Thus, the set Σ∗ is not empty and any solution obtained by the BNE Procedure belongs to Σ∗. The following proposition,
Proposition 18, implies that every profile in Σ∗ is a best Nash equilibrium; that is, this simple procedure finds a best
equilibrium strategy profile in a given symmetric CGF.

Proposition 18. Let BNE be the subset of all best pure strategy Nash equilibria of a given symmetric CGF, then Σ∗
⊆ BNE.

Proof. First, we show that every σ ∈ Σ∗ is a Nash equilibrium strategy profile. For all e ∈ M, hσ
e = k, which implies

l(hσ
e ) = l(k) < W (by the definition of k). That is, for all i ∈ N and e ∈ σi we have l(hσ

e ) < W . If k = n then e ∈ σi for all
i ∈ N . Otherwise, by the definition of k, l(hσ

e + 1) = l(k + 1) ≥ W . That is, for all i ∈ N and e ∉ σi we have l(hσ
e + 1) ≥ W .

Hence, by Proposition 7, σ is a Nash equilibrium strategy profile. That is, Σ∗
⊆ NE.

It remains to show thatΣ∗
⊆ BNE.We begin by showing that all profiles inΣ∗ have the same social disutility. Letσ ∈ Σ∗

and recall that x players in σ choose
mk

n


service providers and y players choose

mk
n


+ 1 service providers, where x and

y are given by (7). Thus, the social disutility of σ equals

x · (Wf ⌊
mk
n ⌋

+ l(k)(1 − f ⌊
mk
n ⌋)) + y · (Wf


mk
n


+1

+ l(k)(1 − f

mk
n


+1

)).

This implies that Π(σ1) = Π(σ2) for all σ1, σ2 ∈ Σ∗. Therefore, to prove that Σ∗
⊆ BNE, it suffices to show that

Σ∗
∩ BNE ≠ ∅.
Let BNE1 ⊆ BNE be the (nonempty) subset of all best Nash equilibria with minimum total congestion on the resources.

That is,

BNE1 = arg min
σ∈BNE

−
e∈M

hσ
e ,

and let BNE2 ⊆ BNE1 be the (nonempty) subset of all best equilibria with minimum total congestion and minimum sum of
the differences between the cardinalities of the players’ strategies:

BNE2 = arg min
σ∈BNE1

−
{i,j}:i,j∈N

| |σi| − |σj| |.

We show below that BNE2 ⊆ Σ∗, implying Σ∗
∩ BNE ≠ ∅.

Let σ ∈ BNE2. If σ ∈ Σ∗ we are done. Otherwise, there exists a resource e ∈ M with hσ
e ≠ k (implying by Proposition 14

that hσ
e > k), or there exist i, j ∈ N such that |σi| > |σj| + 1. Assume the former case and let a ∈ argmaxe∈M hσ

e . Note
that l(hσ

a ) = W (this is since hσ
a > k implies l(hσ

a ) ≥ W and ∃i ∈ N with a ∈ σi, yielding l(hσ
a ) ≤ W by Proposition 7 and

σ ∈ NE). Let i ∈ N with a ∈ σi, and consider σ ′
= (σ−i, σi r {a}). Now, l(hσ

a ) = W implies l(hσ ′

a ) ≤ W and l(hσ ′

a + 1) ≥ W .
For any other resource e ∈ M r {a}, hσ ′

e = hσ
e implies l(hσ ′

e ) ≤ W and l(hσ ′

e +1) ≥ W (or hσ ′

e = n). Then, by Proposition 7, σ ′

is a Nash equilibrium strategy profile. By Lemma 16, Π(σ ′) ≤ Π(σ ), implying σ ′
∈ BNE. Thus, since

∑
e∈M hσ ′

e <
∑

e∈M hσ
e ,

we get a contradiction to σ ∈ BNE1. Therefore, σ satisfies hσ
e = k for all e ∈ M . Now, since σ ∉ Σ∗, there exist i, j ∈ N

such that |σi| > |σj| + 1. Let σ ′′
= (σ−{i,j}, σi r {b}, σj ∪ {b}), where b ∈ σi r σj. We note that for all e ∈ M, hσ ′′

e = hσ
e = k

yields l(hσ ′′

e ) < W and l(hσ ′′

e + 1) ≥ W (or hσ ′′

e = n). Then, by Proposition 7, σ ′′ is a Nash equilibrium strategy profile.
By Lemma 17, Π(σ ′′) ≤ Π(σ ), implying σ ′′

∈ BNE. In addition, since hσ ′′

e = k for all e ∈ M , then, by Proposition 14,
σ ′′

∈ argminσ∈BNE
∑

e∈M hσ
e = BNE1. Thus,

∑
{i,j}:i,j∈N | |σ ′′

i | − |σ ′′

j | | <
∑

{i,j}:i,j∈N | |σi| − |σj| | contradicts σ ∈ BNE2. This
completes the proof. �

By Proposition 18, the BNE Procedure constructs a best equilibrium strategy profile in which the players are distributed
‘‘evenly’’ over the service providers. Hence, it is possible to suggest to the players rational behaviors, which are fair, and also
benefit the society.

Next, in the following proposition, Proposition 19, we identify some worst equilibria in symmetric CGFs. These
equilibrium points have very simple form and can be easily constructed, also in a greedily fashion, but in a different way
to the BNE Procedure. As opposed to the fairness property of a best Nash equilibrium obtained by the BNE Procedure, the
suggested worst Nash equilibrium suffers from the largest possible imparity among the players. The proof of the following
proposition follows similar lines to the ones used in the proof of Proposition 18 above and thus appears in the Appendix.
Recall that k∗

= max{k : l(k) ≤ W , k = 1, . . . , n}. Note that if l(k) ≠ W for all k, then k∗
= k.

Proposition 19. Given a symmetric CGF, let Σ∗∗
⊆ Σ be the subset of all pure strategy profiles in which exactly k∗ players play

M, n − k∗ players play ∅ and hσ
e = k∗ for all e ∈ M. Then, Σ∗∗

⊆ WNE, where WNE denotes the subset of all worst Nash
equlibria.
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Next we compare the best and the worst Nash equilibria. Let us denote the social disutility of a best Nash equilibrium
strategy profile by ΠB, and the worst one by ΠW . Then,

ΠW = k∗(Wf m + l(k∗)(1 − f m)) + (n − k∗)W
= k∗(1 − f m)(l(k∗) − W ) + nW ;

ΠB = x

Wf ⌊

mk
n ⌋

+ l(k)

1 − f ⌊

mk
n ⌋


+ y


Wf


mk
n


+1

+ l(k)

1 − f ⌊

mk
n ⌋+1


= f ⌊

mk
n ⌋(x + fy)(W − l(k)) + nl(k),

where x and y are given by (7).
Therefore, the ratio between the social disutilities in a worst and a best equilibrium is

ΠW

ΠB
=

k∗(1 − f m)(l(k∗) − W ) + nW

f ⌊
mk
n ⌋(x + fy)(W − l(k)) + nl(k)

.

Since l(k) < W and l(k∗) ≤ W , we have that

ΠW

ΠB
<

nW
nl(k)

=
W
l(k)

.

This implies that the values of the social disutilities in different Nash equilibrium points lie in a very narrow range. In the
context of social performance of Nash equilibria, one has to ask how far these values are from the social optimum.

6.3. Nash equilibria and social optimum

In this section we discuss the social performance of Nash equilibria in congestion games with failures. Previous results
of Awerbuch et al. [4] and Christodoulou and Koutsoupias [7] showed that the price of anarchy (the worst possible ratio
between social disutilities at an equilibrium and an optimum outcome) of pure equilibria in congestion games with
nonnegative linear cost functions is 5

2 . We show that in CGFs with such cost functions even the best possible ratio between
pure equilibrium and optimum social disutilities (‘‘the price of stability’’) depends on the parameters of the game and cannot
be bounded by a constant value. As a result, the price of anarchy in CGFs does not have a constant upper bound, implying
that it is unbounded in general. Consider the following example.

Example 20. Supposewe have the setN of n ≥ 2 players sharing the setM ofm ≥ 2 service providers. Each service provider
e ∈ M has the failure probability f , and the service cost of each SP for each player is l(k) = k, where a is a fixed completion
cost and k ∈ {1, . . . , n}. The incompletion cost of each player isW = n.

Recall that there is a best Nash equilibrium, σ , in which x players choose
mk

n


service providers and y players choosemk

n


+ 1 service providers, where k = max{k : l(k) < W , k = 1, . . . , n} and x and y are given by (7). In our example,

k = n − 1, which implies
mk

n


= m −

m
n


. The disutility of player i ∈ N at this point is given by

Π x
i (σ ) = f m−⌈

m
n ⌉W +


1 − f m−⌈

m
n ⌉


l(n − 1)

= f m−⌈
m
n ⌉n +


1 − f m−⌈

m
n ⌉


(n − 1)

= n −


1 − f m−⌈

m
n ⌉


,

or Π
y
i (σ ) = f m−⌈

m
n ⌉+1W +


1 − f m−⌈

m
n ⌉+1


l(n − 1)

= f m−⌈
m
n ⌉+1n +


1 − f m−⌈

m
n ⌉+1


(n − 1)

= n −


1 − f m−⌈

m
n ⌉+1


,

with Π x
i (σ ) ≥ Π

y
i (σ ). Then, the social disutility of σ ,

Π(σ ) =

−
i∈N

Πi(σ ) ≥ n

n − (1 − f m−⌈

m
n ⌉)


.

Consider the combination of strategies σ̂ that corresponds to the following players’ behavior: each player chooses only one
SP and the players divide up the SPs in a uniformway, i.e. each SP is chosen by n

m players (assumem divides n). The disutility
of player i ∈ N at this point is

Πi(σ̂ ) = fW + (1 − f )l
 n
m


= fn + (1 − f )

n
m

,
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and the social disutility is

Π(σ̂ ) =

−
i∈n

Πi(σ̂ ) = n

fn + (1 − f )

n
m


.

Then, the ratio between the outcomes of a best Nash equilibrium and a social optimum is

Π(σ )

Π(OPT )
≥

Π(σ )

Π(σ̂ )
≥

n

n − (1 − f m−⌈

m
n ⌉)


n


fn + (1 − f ) n

m

 =

n −


1 − f m−⌈

m
n ⌉


fn + (1 − f ) n

m

=

m

n −


1 − f m−⌈

m
n ⌉


fmn + (1 − f )n

f→0
−−→

m(n − 1)
n

n→∞
−−−→ m.

This implies that the ratio between the disutilities in a best Nash equilibrium and the social optimum (and therefore, the
price of anarchy—the ratio between the social disutilities in a worst equilibrium and the social optimum) in CGFs, unlike in
congestion games, is not bounded above by a constant, but is game-dependent. Therefore, the price of stability and the price
of anarchy are unbounded in general.

It is of interest to know, whether it is possible to find an upper bound in terms of the game parameters. To address
this problem one has to deal with different types of service cost functions (linear, polynomial etc.), and they may lead to
different bounds on the price of stability/anarchy. In addition, there is a need to find a method for evaluating an optimal
social disutility, which appears to be a non-trivial problem even in the symmetric games. We see evaluating the price of
stability/anarchy in CGFs as one of the most interesting and challenging directions to continue our study.

7. Summary and future work

The study of congestion in systems is central to many disciplines. This congestion may be a result of the actions taken by
self-motivated participants, and therefore congestion settings deserve extensive study. Surprisingly, although the notion of
machine failures is widely discussed in the OR and CS literature, the relationships between congestion settings with self-
motivated participants and machine failures have hardly been studied. In order to address this need we introduced in this
paper the notion of Congestion Gameswith Failures [CGFs]. As it turns out, this new setting leads to interesting observations
about the interplay between the need to deal with failures and the emergence of congestion in non-cooperative systems.
Indeed, the classical idea of using several resources in order to overcome the possibility of failure, may result in a highly
congested system, hurting all players in the system.

Our results show that although CGFs do not possess a potential function, and not even a generalized ordinal potential
function, they always have a Nash equilibrium in pure strategies. Moreover, although an arbitrary improvement dynamics
may cycle, any sequence of the players’ best responses converges to an equilibrium profile. We also propose a procedure
that guarantees convergence in polynomial time.

We further explore the properties of pure strategy equilibria in CGFs. In particular, for symmetric games we characterize
best and worst equilibria and show that best equilibria possess fairness properties. The disutilities of best and worst
equilibria are shown to be quite close to one another, while the relation between their disutility and the optimal social
disutility might be unbounded, in difference to the results known for standard congestion games.

Although the price of stability and the price of anarchy in CGFs are unbounded in general, it is a challenging question
whether it is possible to find an upper bound in terms of the instance parameters. In addition, the inefficiency of Nash
equilibria motivates the study of methods for improving the social outcome obtained by selfish players. In this context, one
may consider the use of taxation in order to improve the social utility. Another interesting direction is to characterize the
semi-strong Nash-equilibria.

The model of CGFs can be extended in various ways. For instance, a natural generalization is to introduce fixed costs
(or, taxes) that the players would be required to pay for all service providers they use. As it turns out, incorporating taxes
significantly complicates the model, and basic results such as Proposition 7, hold no more. However, for the special case
with symmetric taxes and failure probabilities we were able to prove the existence of a pure strategy Nash equilibrium
and develop a polynomial-time algorithm for its construction. These results are presented in a separate paper on Taxed
Congestion Games with Failures [TCGFs] [22]. We intend to continue our study of the TCGF-model: in particular, it is a
challenge to generalize the model to allow for resource-dependent taxes and failure probabilities, and explore the relations
between the taxation scheme and the social welfare.
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Appendix

A.1. Proof of Lemma 17

Since |σi| > |σj| + 1, then σi r σj is not empty, and let b ∈ σi r σj be such a resource with maximal service cost:
b ∈ argmaxe∈σirσj l(h

σ
e ). We want to show that if we take this resource from player i and give it to player j, the social

disutility of the players can only improve. Obviously, for all e ∈ M, hσ̂
e = hσ

e (wewill denote it by he). Then, since σ̂k = σk for
all k ≠ i, j, we have Πk(σ̂ ) = Πk(σ ), for all k ≠ i, j. Therefore, it suffices to show that Πi(σ̂ )+Πj(σ̂ ) ≤ Πi(σ )+Πj(σ ). The
sample path technique that we used in the proofs of Proposition 7 and Lemma 16 is not valid here, and we operate directly
with expected disutilities.

[Πi(σ ) + Πj(σ )] − [Πi(σ̂ ) + πj(σ̂ )] = Wf |σi| +

−
A′∈P(σi)r{∅}

min
e∈A′

l(he)s|A
′
|f |σirA′

|

+Wf |σj| +

−
B∈P(σj)r{∅}

min
e∈B

l(he)s|B|f |σjrB|

−Wf |σi|−1
−

−
A∈P(σir{b})r{∅}

min
e∈A

l(he)s|A|f |σirA|−1

−Wf |σj|+1
−

−
B′∈P(σj∪{b})r{∅}

min
e∈B′

l(he)s|B
′
|f |σjrB′

|+1.

For any set X , we henceforth denote by P̄(X) the set of all nonempty subsets of X: P̄(X) = P(X) r {∅}, and observe that the
following equality holds for every pair of sets X, Y :

P̄(X) = P̄(X ∩ Y ) ∪ P̄(X r Y ) ∪ {Ω ∪ Ψ |Ω ∈ P̄(X ∩ Y ), Ψ ∈ P̄(X r Y )}. (8)

By (8), and since b ∈ σi r σj,

P̄(σi) = P̄(σi r {b}) ∪ {b} ∪ {A ∪ {b} | A ∈ P̄(σi r {b})};

P̄(σj ∪ {b}) = P̄(σj) ∪ {b} ∪ {B ∪ {b} | B ∈ P̄(σj)}. (9)

Then, by (9),

[Πi(σ ) + Πj(σ )] − [Πi(σ̂ ) + Πj(σ̂ )] = Wf |σi|−1(f − 1) + Wf |σj|(1 − f ) + l(hb)sf |σi|−1
− l(hb)sf |σj|

+

−
A∈P̄(σir{b})

min
e∈A

l(he)s|A|f |σirA|
−

−
A∈P̄(σir{b})

min
e∈A

l(he)s|A|f |σirA|−1

+

−
A∈P̄(σir{b})

min
e∈A∪{b}

l(he)s|A|+1f |σirA|−1
−

−
B∈P̄(σj)

min
e∈B

l(he)s|B|f |σjrB|+1

+

−
B∈P̄(σj)

min
e∈B

l(he)s|B|f |σjrB|
−

−
B∈P̄(σj)

min
e∈B∪{b}

l(he)s|B|+1f |σjrB|.

Simplifying this expression, we get

[Πi(σ ) + Πj(σ )] − [Πi(σ̂ ) + Πj(σ̂ )] = s
[
(f |σj| − f |σi|−1)(W − l(hb)) +

−
A∈P̄(σir{b})

s|A|f |σirA|−1

× ( min
e∈A∪{b}

l(he) − min
e∈A

l(he)) +

−
B∈P̄(σj)

s|B|f |σjrB|(min
e∈B

l(he) − min
e∈B∪{b}

l(he))

]
.

By (8), and since b ∈ σi r σj,

P̄(σi r {b}) = P̄(σi ∩ σj) ∪ P̄((σi r {b}) r σj)

∪{Ω ∪ A′
| Ω ∈ P̄(σi ∩ σj), A′

∈ P̄((σi r {b}) r σj)};

P̄(σj) = P̄(σi ∩ σj) ∪ P̄(σj r (σi r {b}))
∪{Ω ∪ B′

| Ω ∈ P̄(σi ∩ σj), B′
∈ P̄(σj r (σi r {b}))}. (10)
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Then, by (10),

[Πi(σ ) + Πj(σ )] − [Πi(σ̂ ) + Πj(σ̂ )] = s
[
(f |σj| − f |σi|−1)(W − l(hb)) +

−
Ω∈P̄(σi∩σj)

(min
e∈Ω

l(he) − min
e∈Ω∪{b}

l(he))s|Ω|

×

f |σjrΩ|

− f |σirΩ|−1
+

−
B′∈P̄(σjr(σir{b}))

(min
e∈B′

l(he) − min
e∈B′∪{b}

l(he))

× s|B
′
|f |σjrB′

|
+

−
B′∈P̄(σjr(σir{b}))

−
Ω∈P̄(σi∩σj)

( min
e∈B′∪Ω

l(he) − min
e∈B′∪Ω∪{b}

l(he))

× s|B
′
∪Ω|f |σjr(B′

∪Ω)|
+

−
A′∈P̄((σir{b})rσj)


min

e∈A′∪{b}
l(he) − min

e∈A′
l(he)


× s|A

′
|f |σirA′

|−1
+

−
A′∈P̄((σir{b})rσj)

−
Ω∈P̄(σi∩σj)

× ( min
e∈A′∪Ω∪{b}

l(he) − min
e∈A′∪Ω

l(he))s|A
′
∪Ω|f |σir(A′

∪Ω)|−1
]
.

Let X ⊆ M represent any (even empty) set of resources. Then,

• f (X), s(X) ≥ 0 (as probabilities);
• f (σj r X) − f ((σi r {b}) r X) > 0 (follows from |σi| > |σj| + 1);
• W ≥ l(hb) (given);
• lX (hX ) ≥ lX∪{b}(hX∪{b}) (since X ⊆ X ∪ {b});
• from the choice of b, for all e ∈ σi r σj, l(he) ≤ l(hb)

⇒ for all Y ∈ P̄(σi r σj) (and, in particular, for Y ∈ P̄((σi r {b}) r σj)), lY∪X∪{b}(hY∪X∪{b}) = lY∪X (hY∪X ).

Therefore, we finally get [Πi(σ ) + Πj(σ )] − [Πi(σ̂ ) + Πj(σ̂ )] ≥ 0, as required. �

A.2. Proof of Proposition 19

ClearlyΣ∗∗ is not empty, and all strategy profiles inΣ∗∗ have the same social disutility k∗(Wf m+ l(k∗)(1− f m)). We turn
now to show that every σ ∈ Σ∗∗ is a Nash equilibrium strategy profile. For all e ∈ M, hσ

e = k∗, implying l(hσ
e ) = l(k∗) ≤ W

(by the definition of k∗). Hence, for all i ∈ N and e ∈ σi we have l(hσ
e ) ≤ W . If k∗

= n then e ∈ σi for all i ∈ N . Otherwise,
by the definition of k∗ and the symmetry, l(hσ

e + 1) = l(k∗
+ 1) > W for each e ∈ M . That is, for all i ∈ N and e ∉ σi we

have l(hσ
e + 1) > W . Then, by Proposition 7, σ is a Nash equilibrium strategy profile. That is, Σ∗∗

⊆ NE.
It remains to prove thatΣ∗∗

⊆ WNE. SinceΠ(σ 1) = Π(σ 2) for allσ 1, σ 2
∈ Σ∗∗, it suffices to show thatΣ∗∗

∩WNE ≠ ∅.
Let WNE1 ⊆ WNE be the (nonempty) subset of all worst Nash equilibria with maximum total congestion on the resources.
That is,

WNE1 = arg max
σ∈WNE

−
e∈M

hσ
e ,

and letWNE2 ⊆ WNE1 be the (nonempty) subset of all worst equilibria withmaximum total congestion andmaximum sum
of the differences between the cardinalities of the players’ strategies:

WNE2 = arg max
σ∈WNE1

−
{i,j}:i,j∈N

| |σi| − |σj| |.

We show below that WNE2 ⊆ Σ∗∗, implying Σ∗∗
∩ WNE ≠ ∅. Let σ ∈ WNE2. If σ ∈ Σ∗∗ we are done. Otherwise,

if there exists a resource a ∈ M such that hσ
a ≠ k∗ then by Proposition 14 hσ

a < k∗
≤ n. Let i ∈ N be a player with

a ∉ σi, and consider σ ′
= (σ−i, σi ∪ {a}). Since σ is a Nash equilibrium strategy profile, by Proposition 7, l(hσ

a + 1) ≥ W ,
implying l(hσ ′

a + 1) ≥ W . In addition, hσ
a < k∗ yields l(hσ ′

a ) ≤ l(k∗) ≤ W . For any other resource e ∈ M r {a}, hσ ′

e = hσ
e

implies l(hσ ′

e ) ≤ W and l(hσ ′

e + 1) ≥ W (or hσ ′

e = n). Thus, by Proposition 7, σ ′ is a Nash equilibrium strategy profile.
We note that l(hσ

a + 1) = l(hσ ′

a ) ≥ W , coupled with the definition of k∗, imply that l(hσ ′

a ) ≥ l(k∗) ≥ l(hσ
e ) = l(hσ ′

e ) for
all e ∈ M r {a}. Then, by Lemma 16, Π(σ ′) ≥ Π(σ ), implying σ ′

∈ WNE. Thus, since
∑

e∈M hσ ′

e >
∑

e∈M hσ
e , we get a

contradiction to σ ∈ WNE1. Therefore, σ satisfies hσ
e = k∗ for all e ∈ M . Then, since σ ∉ Σ∗∗, there exist i, j ∈ N such

that σi, σj ≠ ∅,M (w.l.o.g., assume that |σi| ≤ |σj|). Let σ ′′
= (σ−{i,j}, σi r {b}, σj ∪ {b}), where b ∈ σi r σj. We note that

for all e ∈ M, hσ ′′

e = hσ
e yields l(hσ ′′

e ) ≤ W and l(hσ ′′

e + 1) ≥ W (or hσ ′′

e = n), implying that σ ′′ is a Nash equilibrium
strategy profile. By Lemma 17, Π(σ ′′) ≥ Π(σ ), implying σ ′′

∈ WNE. In addition, since hσ ′′

e = k∗ for all e ∈ M , then, by
Proposition 14, σ ′′

∈ argmaxσ∈WNE
∑

e∈M hσ
e = WNE1. Thus,

∑
{i,j}:i,j∈N | |σ ′′

i | − |σ ′′

j | | >
∑

{i,j}:i,j∈N | |σi| − |σj| | contradicts
σ ∈ WNE2. This completes the proof. �
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