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Abstract 

In previous work on artificial social systems, social laws for multi-agent mobilization were hand- 
crafted for particular network structures. In this work, we introduce an algorithm for the auromaric 
synthesis of social laws for multi-agent mobilization in any 2-connected graph environment. We 

introduce the notion of a graph routing and show that the problem of computing a useful social 
law can be reduced to that of finding a routing in a graph. Then we show that any given 2- 
connected graph has a routing which can be efficiently constructed, yielding the desired social 
law for multi-agent mobilization on the given graph. @ 1997 Elsevier Science B.V. 

Keywords: Synthesis of social laws; Multi-agent mobilization; Graph routing 

1. Introduction 

A number of coordination methods have been discussed in the AI literature; Some of 

these methods are concerned with centralized approaches to coordination [4,15,26,27]. 
Other methods are concerned with decentralized approaches [2], where issues such 

as negotiations [ 141, deals [28], and consensus [7] play a major role. The artificial 
social systems methodology (e.g., [ 1, 18,251) attempts to bridge the gap between 
the fully centralized and the fully decentralized approaches to coordination. The basic 
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idea is that the society will adopt a set of social laws; each agent will be required 

to obey these laws, and will be able to assume that all others will as well. These 

laws will on the one hand constrain the plans available to the agent, but on the other 

hand will guarantee certain behaviors on the part of other agents. A social law may 

include communication protocols which lead to rational deals in multi-agent encounters 
[ 2 11, or embody rationality constraints for cooperation without communication in such 
encounters [ 111. In general, however, the social law may also include rules which 
prevent agents from arriving at various multi-agent encounters (e.g., agents may be 

required to keep the right of the road, which will prevent them from arriving at multi- 

agent encounters where they might move one against the other), and other forms of 

rules. The exact semantics of artificial social systems and of the relationships of this 

approach with the above-mentioned and other lines of research are discussed in detail 
in [ 19,251. 

The idea of traffic laws for mobile robots illustrates important aspects of the ar- 

tificial social systems approach. Rather than install a centralized controller or have 

the robots continually negotiate in order to avoid collisions, we will have robots 

obey traffic laws such as “keep to the right of the road”. This idea has been ex- 
plored in the work by Shoham and Tennenholtz [24,25]. However, the correspond- 

ing laws have been hand-crafted for the particular domain of a grid structure with- 

out obstacles. In this paper we wish to advance the state-of-art in the work on so- 
cial laws by considering two extensions of previous work on social laws for mobile 

robots: 
(1) We consider social laws for robots moving in any 2-connected graph structure. 

This gives a very general framework for the discussion of social laws. 

(2) We discuss the automatic synthesis of social laws for mobile robots. Although 

the synthesis of social laws has been discussed in the context of abstract models 
[23], work on applying social laws to the domain of mobile robots has been 

concerned with laws which are hand-crafted for a particular domain. In this 
paper, we bridge the gap between the related lines of research, by introducing 
a polytime algorithm for the synthesis of an appropriate social law for any 

2-connected graph environment. 

Our results here allow for the synthesis of social laws for any specified network. An 
important issue to be studied in future concerns situations where the structure of the 
underlying graph is part of the design and not prescribed ahead of time. The notion of 
graph routing introduced in this paper and our algorithm suggest that certain classes of 

polytopal graphs (such as those studied in [ 8,13,20] ) may provide network structures 
over which particularly efficient social laws can be synthesized. 

Our article is organized as follows. In Section 2 we discuss multi-robot networks, 
which are a general model for agent mobilization, and define (useful) social laws in 

the context of this model. In Section 3 we introduce the notion of a graph routing, 
and show that the existence of a routing implies the existence of useful social laws. In 
Section 4 we show that any 2-connected graph has a routing, and introduce an efficient 
algorithm for constructing a routing (and therefore an appropriate useful social law) for 
any given 2-connected multi-robot network. In Section 5 we conclude with a discussion 

of our setting and results. 



S. Onn, M. Tennenholtz/Artijicial Intelligence 95 (1997) 155-167 157 

2. Social laws 

In this paper we discuss multi-robot networks, and the use of social laws for agent 

mobilization in such systems. The multi-robot networks are general models where one 

may discuss the coordination of multi-agent systems. In particular, these models include 

the models discussed in the Automated Guided Vehicles ( AGVs) literature (see [ 12,221 
for some overview of the related literature). 

Definition 1. A multi-robot network consists of a graph G = (YE), a set R of robots, 

and a strictly positive length function A : E -+ E%. The function A associates with each 

edge uu of the graph a particular length which determines the distance a robot needs to 

travel in order to get from u to u. We assume the existence of a clock which measures 
time units.2 At each point in time each robot is in a particular node, or at a particular 

point along the edge between two nodes. 

The action taken by a robot is a decision about its direction and velocity. The velocity 
of a robot is the number of units of distance it passes in a time unit. The robot 

decides on its direction and velocity whenever it is in a node of the graph. We assume 

the robots initially enter the graph from a particular (arbitrary) node with a certain 

time offset from one another, which is determined by the system’s designer. When 

the robots move in the graph, they can not observe each other. In addition, they need 
to achieve goals which arrive to them in a dynamic fashion. A goal is a request for 

visiting a particular node of the graph (and leaving it afterwards for obtaining another 

goal). We would like that all of the robots will be able to obtain their goals while 
avoiding collisions among the robots. In the body of this paper we refer to point 

robots, which collide when they are at the same point (i.e., on the same node or 

at the same point along an edge). However, our algorithm can be used also in the 
case where a robot occupies a non-negligible space. We return back to this point in 
Section 5. 

In order to guarantee the agents to obtain their goals while avoiding collisions, we 
use the idea of a social law. 

Definition 2. Given a graph G = (YE), a social law determines a subset A & E of 
the edges in which the robots are allowed to move, restricts the direction of movement 

along each edge of A, and restricts the velocity in which the robots are allowed to move 

along each edge of A. 

Hence, a social law in this case is a traffic law. This traffic law should guarantee 
that each robot will be able to achieve its goals (while avoiding collisions with other 
robots) regardless of what the other robots do, as long as all of the robots obey the law 
as manifested by the designer. 

* The particular way in which time is measured, does not play a role in our results. 
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Definition 3. Given a multi-robot network, a useful social law is a social law that 

guarantees that if all the robots initially enter the graph from an arbitrary fixed node 

with an offset of one time unit from one another, and all the robots obey the social law, 

then the following hold: 

( 1) Collisions are avoided (i.e., two robots will not be in the same location at the 

same time). 
(2) Given a goal for a robot, the robot will be able to devise a plan for reaching this 

goal regardless of the robot’s current location and regardless of the behavior of 

the other robots. 

3. Social laws via routings 

In this section we introduce the notions of graph routing and graph rooting, and show 
that the design of a social law can be reduced to the problem of finding a routing in 

a graph. We show that given a routing in the graph one can construct a corresponding 
useful social law. In the next section we show that routings exist for any 2-connected 

graph and that routings can be efficiently computed for such graphs. 

In this paper we consider only simple graphs-those which contain neither loops nor 

parallel edges. We now briefly recall some basic graph-theoretic terminology which we 
shall need (see [ 31 for details). A cut-vertex in a graph is one whose removal leaves the 
graph disconnected. A block is a graph containing no cut-vertex. A graph is 2-connected 

if it is a block and has at least three vertices. The subgraph induced by a subset U 5 V 

of the vertices of a graph G = (YE) is its subgraph G[ U] with vertex set U containing 

all edges uu E E for which u,u E U. A block in a graph is an induced subgraph 

which is a block and is not properly contained in any other induced subgraph which 
is a block. If G[ U], G[ W] are two distinct blocks in G then U and W share at most 
one vertex. Each edge of G is contained in precisely one block. A digraph (directed 

graph) is strongly connected if it contains a dipath from every vertex to every other 

vertex. 
The above graph-theoretic concepts are standard. We now define the concepts of 

routing and rooting which play a fundamental role in our considerations. Throughout, 
let N stand for the set of nonnegative integers. Let f : V ----f N be a labeling of the 
vertices of a graph G by nonnegative integers. For a subset U C V of vertices, we 

denote by min f(U) and max f(U), respectively, the smallest and largest label of a 
vertex in U. An f-minimal (respectively, f-maximal) vertex in U is any u E U for 

which f(u) = min f( U) (respectively, f(u) = max f( U)). A labeling f as above 
induces a directed graph Gf = (KA) on the same vertex set as G, whose arc set A 

is obtained from E by removing each edge uu E E with f(u) = f(u), and orienting 
each edge uu E E with f(u) < f(u), in the direction uu if u is f-maximal and u is 
f-minimal in the block containing uu, and in the direction uu otherwise. Note that for 

2-connected graphs, edges are simply oriented from the f-smaller to the f-larger vertex, 
except that edges connecting an f-minimal vertex to an f-maximal one are oriented the 
other way. 
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Definition 4. A routing of a graph G is a labeling f : V 4 N of its vertices by 
nonnegative integers for which the induced digraph Gf is strongly connected. A routing 

under which there is a unique f-minimal vertex r in V, called a root, will be called a 

rooting. Letting p := max f(V) - min f( V) + 1, the routing (respectively, rooting) will 

be called a p-routing (respectively, p-rooting). 

We now show that a routing of a graph can serve as a basis for useful social laws in 

multi-robot networks. Let a given multi-robot network consist of a graph G = (XE), a 

set R containing m robots, and a strictly positive length function A : E --f Iw. Suppose 
that f is a p-routing of G and let Gf = (VA) be the induced digraph. Let D = 

1 + max{O, m - p}. Define the following social law, which we name “Network Traffic 

Law”, for this multi-robot network. 

Network Traffic Law. 
( 1) Robots are required to enter the network from an f-minimal vertex with an offset 

of one time unit from one another. 

(2) Robots are required to move only along the arcs of the graph Gf induced by the 
routing f. 

(3) Define a velocity function v : A 4 R as follows: for e = uu E A, put 

v(e) = h(e)/D if u is f-maximal and u is f-minimal, and put y(e) = 

A(e) / ( f( o) - f(u) ) otherwise. Robots are required to move only in the calcu- 
lated velocities. 

A multi-robot network is 2-connected if its underlying graph is. The significance of 
the above Network Traffic Law is manifested by the following theorem. 

Theorem 5. Suppose a given 2-connected multi-robot network admits a routing. Then 
the derived Network TrafJic Law is a useful social law. 

Proof. First, it is clear that if agents collide, then this collision should occur in a node 
of the graph: this is implied by the fact that agents move in fixed velocity along each 

edge of the graph. Without loss of generality, let f(o) = 0 for the f-minimal node u 

and let the range of f be the integers between 0 to p - 1. By construction we get that if 

a robot gets to a node u, which is not f-minimal, then it gets there exactly after f(u) 
time units from the last time it visited the f-minimal node, regardless of the actual route 
the robot has followed. The calculation of the velocity for moving from an f-maximal 

node to the f-minimal node guarantees that the time for completing a round trip starting 
at the f-minimal node is independent of the route taken, and that each robot would not 

collide with a robot which has not entered the graph yet. This implies that no collisions 
might occur. By definition of a routing, each robot can get from any node of the graph 
to any other node of the graph. Combining the above we get the desired result. 0 

Remark. If, due to physical limitations on the robots, an upper bound on the allowed 
velocities is prescribed, then Network Traffic Law above can be modified so as to obey 

this bound simply by dividing all velocities by a suitable factor. 
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4. Synthesis of social laws and graph rootings 

The previous section has shown a reduction of social laws to graph routings. If 

we are able to generate a graph routing, then we are able to define an appropriate 

useful social law. One question that arises is whether there are interesting graphs for 

which a routing exists. As we will show below, any 2-connected graph has a rout- 
ing. This implies that a very large family of problems can be handled by the so- 

cial laws methodology. Notice that the mobilization of AGVs is usually discussed in 
the context of 2-connected graphs [22]. A second question is whether it is possi- 

ble to automatically and efficiently synthesize the appropriate routings. The answer 
is positive: our proof that any 2-connected graph has a routing is constructive and 

provides a simple polytime algorithm for the automatic synthesis of a routing for 
any given 2-connected graph. This algorithm is the topic of the rest of this sec- 

tion. 
The routing produced by our algorithm will in fact be a rooting, and the root could be 

an arbitrary vertex chosen by the system designer. We therefore allow the input to the 

algorithm, in addition to a 2-connected graph, to include a designation of an arbitrary 
vertex to be the root. 

Rooting Algorithm. 
l Input: A 2-connected graph G = (YE) with designated vertex r E V. 

l Initialization: Pick an edge sr E E, put f(y) = 0 and f(s) = 1. 
l Iteration: While there are unlabeled vertices do: 

1. Pick an edge ucui connecting a labeled vertex ua to an unlabeled vertex ui and 

extend it to a path ~0, ui , . , uk whose end points un # uk are already labeled 

but internal points are not. 
2. Reversing the order of indices of the ui if necessary, assume that f(ua) 6 

f( Uk). Label the internal points ~11,. , U&l by f( ui) = f(un) + i. If h := 
f(Uk_i ) - f( uk) 3 0 then increase by h + 1 the label of each labeled vertex 

u@{uo,... , U&I } satisfying f(U) > f( uk). 

l Output: A rooting f of G with root r. 

Remarks. The algorithm can be implemented so as to run in time linear in the number 
of edges. The algorithm can in fact be used to test the 2-connectivity of the input graph: 
simply, if in step 1 of the iteration it is impossible to construct a path as desired, then 

G is not 2-connected. 

Before establishing the validity of the algorithm, we demonstrate it through the fol- 
lowing example. 

Example 6. Three-dimensional cube. Let G be the graph of the 3-dimensional cube, 
drawn in Fig. 1, with the root r being the vertex labeled 0. The construction of the 

rooting of G is demonstrated by Figs. l-4. 
Now consider the multi-robot network on the 3-cube in which all edge lengths equal a 

unit (i.e. A E I ) and which contains m < 6 robots. The useful Network Traffic Law for 
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Fig. I. Rooting the 3-cube: initialization 

step. 

Fig. 2. Rooting the 3-cube: first iteration 

Fig. 3. Rooting the 3-cube: second iteration 

4 3 

5 4 

1 +; 

2 j 

0 1 

Fig. 4. Rooting the 3-cube: final iteration. 

I 

l/3 I ’ 
1 1 :-LI l/3 

I 

1 l 
I 

1 

Fig. 5. The derived Network Traffic Law for unit distances and m < 6 robots. 

this network derived from the rooting of G is depicted in Fig. 5: the robots are allowed 
to move along edges in the directions specified by the arrows, and in the velocities 
specified by the numbers appearing on the edges. 
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Fig. 6. 

We now proceed to prove the correctness of the Rooting algorithm. The character- 
ization of rootings in Proposition 7, together with Proposition 8 will show that the 

algorithm does what it should. In the sequel, recall that a sink in a digraph is a vertex 

with no out-going edges, while a source in a digraph is a vertex with no in-going 

edges. 

Proposition 7. A labeling f : V + N of the vertices of a 2-connected graph G is 
a rooting if and only if there is a unique f-minimal vertex and every vertex of Gf is 

neither a source nor a sink. 

Proof. If Gj has a sink or source then it is not strongly connected, hence f is not 
even a routing. Conversely, consider any vertex u E V. Since no vertex is a source, a 

dipath entering u can be traced back, along which the f-value of vertices decreases, so 

this path can be extended all the way back to r. Likewise, a dipath leaving u can be 

traced, along which the f-value of vertices increases, so it must reach some f-maximal 
vertex s E V, and can then be extended by the arc sr, which is in A since s is not a 

sink. Given now any two vertices U, w, a directed U-W path in Gf is obtained as the 
concatenation of the u-r dipath and the r-w dipath just shown to exist. Hence Gf is 

strongly connected. q 

Remark. If the requirement for a unique f-minimal vertex is dropped, then f may fail 
to be even a routing: the labeling f of the vertices of the 2-connected graph G depicted 
in Fig. 6 induces a digraph Gf which has neither a source nor a sink but is not strongly 

connected, so f is neither a rooting nor a routing of G. 

Proposition 8. Upon the completion of each iteration of the Rooting Algorithm, the 

labeling f is a rooting of the subgraph G[ II] induced by the set U of vertices already 

labeled, with r being the root. 

Proof. This is easily seen to hold upon the completion of the first iteration, with the 
resulting G[ U] f being just a directed circuit (r, ~1,. . , U&l, s, r). Suppose that it 
holds after a certain iteration was completed, and let iJ be the set of vertices already 

labeled and Gf := G[U], the induced digraph. Consider the next iteration. Since G is 
2-connected, a path in step 1 can be constructed, else either the unlabeled vertices are 
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disconnected from the labeled ones or ut is a cut-vertex in G. Now, the new labeling in 
step 2 maintains that r is the unique f-minimal vertex and does not affect the ordering 

relations f(u) < f(u) between any two old vertices U, u E U. Therefore every vertex of 

U will remain neither a source nor a sink in the new digraph G[ U U (~1,. . . , ~k_.~}]~. 

Finally, the labeling also assures that each new vertex Ui has the in going arc ui_-]ui and 
outgoing arc ~iui+t in that digraph. It follows, by Proposition 7 that f remains a rooting 

when this next iteration is completed. 0 

The proposition implies that when the algorithm terminates, the labeling f is a rooting 
of G = G[ V] . Hence the following theorem. 

Theorem 9. The Rooting Algorithm constructs a rooting for every 2-connected graph 

with an arbitrarily chosen root. In particular, every such graph has a rooting with an 

arbitrarily chosen root. 

Combining Theorems 5 and 9, we obtain the following result. 

Corollary 10. Every 2-connected multi-robot network admits a Network Traffic Law 

which is a useful social law and which can be eficiently synthesized via the rooting 

algorithm applied to its underlying graph. 

We finish this section with a few remarks on the cycle time of our synthesized 
Network Traffic Law, that is, the time needed of a robot to move from one destination 
to the next under this Law. Clearly, the cycle time depends on the p-rooting of the 

underlying graph G from which the Network Traffic Law was synthesized. Specifically, 

if the number of robots is less than or equal to p and all edge lengths equal a unit then 
this time is precisely p. For a network with a small number of robots it is therefore 
desirable to produce a p-rooting with p small. A lower bound on p is obviously provided 
by 28(G), where 6(G) is the diameter of G, that is, the maximum distance between 
any pair of vertices. This bound is not always attainable: for example, if G is a circuit 

of length 2p + 1 then S(G) = p but G has no Q-rooting. Our Rooting Algorithm 

above seems to perform quite well. For instance, for the d-dimensional hypercube Cd, 

the choice made at step 1 of each iteration can be determined so as to produce the 
following p-rooting fd with minimum possible p = 2d = 26( Cd), defined, for each 
vertex u=(u,,... 9~) E (0, 1)" of Cd, by 

d- 1 

fct(u) := (2d - 1) . u,/ + ( - 1 ) l’d c u, 
i=l 

(it easily follows from Proposition 7 that this function indeed is a rooting). The case 
of the 3-cube is described explicitly in Example 6 and Figs. l-4 above. A study of 

the cycle time in the general case is under way and will be treated in more detail 
elsewhere. 

Another issue to be addressed concerns situations where the structure of the underlying 
graph is part of the design. The above discussion and the superiority of graphs with low 
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diameter suggest that a good source of graphs may be provided by certain classes of 

polytopal graphs (see e.g. [ 8,13,20] >. 

5. Discussion 

The study presented in this paper refers to point robots. Although this may be a 

reasonable assumption in illustrating the artificial social systems approach, one may wish 
to relax this assumption. In order to handle this issue, consider the minimal velocity 
Umin which the algorithm outputs for a particular graph. Assume that the length of each 

edge is at least one unit and we wish to guarantee a one unit distance between each pair 

of robots. In this case, if the robots enter the graph in a time offset of l/ad” time units 

from one another, it is easy to check that a distance of at least one unit between the 
robots will be preserved. The number of robots on the network should be limited to at 

most p x ukn on the worst case, where f is assumed to be a p-rooting. In order to handle 

these and other related problems in a more complete fashion, and in order to discuss the 

efficiency of the social laws (which we have partially discussed in Section 4)) further 

study which is tailored for more specific graph structures is needed. In the special case 
of a graph which can be embedded in a 2-dimensional grid, such a study is presented 

in [5,6]. The algorithm presented there enables to obtain a good competitive ratio 
between the time that it takes an agent to obtain a goal (given the social law that the 
algorithm outputs) and the time it would have taken it to obtain the goal if the agent 
would have worked in isolation. However, various mobilization settings correspond to 

2-connected graphs which can not be embedded in 2-dimensional grids. In addition, 
our study introduces a polynomial algorithm for the automatic synthesis of social laws, 
while the latter work introduces an exponential algorithm which is especially useful (and 

lead to efficient social laws) for graphs which can be embedded in a two-dimensional 

grid. 
There are several approaches to the coordination of physically moving entities. One 

may consult [ 16,17,22] for an overview. The social system approach superficially 

resembles some more classical path planning techniques such as quad-trees and cell 
decomposition. The similarity stems from the idea of partitioning the environment into 

regions while allowing particular type of movements inside regions and particular type of 
movements between regions. However, the artificial social systems approach is directed 
towards overcoming the problem of coordinating agents activities, which make the 

techniques used in this context much different from the ones used in classical path 
planning. The artificial social systems approach is also much different from the more 
centralized approach to the control of multiple robots as well as from decentralized 

approaches in this regard (e.g., [ 4,91) . 3 

R In [ 161 the idea of traffic/social laws is discussed in the context of other techniques for path planning in 

multi-agent systems. In a centralized approach robots are treated as a single entity that moves in a composite 

space, while in a decentralized approach each robot treats the others as moving obstacles. Traffic/Social 

laws enable the robots to behave individually, while avoiding many on-line collision avoidance and liveness 

problems. 
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In our study we have assumed that the agents may change their velocity, while 
ignoring the need for acceleration and deceleration. This is quite typical for work on 
the theory of AGVs, where agents are assumed to stop and reinitiate their movement 

without any cost [ 121. Nevertheless, our study can take into account acceleration and 

deceleration by allowing the agents to accelerate and decelerate while taking care that 

they will not collide in spite of these processes. This can be obtained by having the 
agents enter the graph with time offset which takes into account the time needed for 

acceleration and deceleration. The discussion of the exact effects of this change on the 
number of agents which may enter a graph will depend on the particular structure of 

the graph, and is beyond the scope of this paper. 
The reader should notice that in some cases the social law generated may require from 

the agents to move in somewhat low speeds, although it will guarantee the achievement 
of goals. This situation may occur for example where there is a short edge uu in the 

graph, where the difference between the labels (generated by our algorithm) of u and 
u is large. This point should be addressed by considering the properties of the rooting 

algorithm for more particular graphs. The emphasis of our study is on a general automatic 
procedure for the generation of social laws which guarantee goal achievements and no 
collisions for the whole family of 2-connected graphs. Notice that in other decentralized 

approaches, where paths are calculated in a decentralized fashion (e.g., [ 91) there is no 
guarantee that the goals of the agents will be actually obtained. Given that our results are 

obtained for the case of agents which operate with minimal communication and sensing 

abilities, we believe our results to be more applicable than previously established results 

in this regard. 
There are various issues which we believe can not be easily handled by the techniques 

explored in this paper. This includes for example the case where the structure of the 

environment may change. We see the study of applying the artificial social systems 

approach to such dynamic contexts as a promising direction for future research. An 
important point to notice, however, is that once the changes in the system have been 
detected, we may use the fact that our synthesis algorithm is a very efficient (linear) 

algorithm in order to generate a new social law. This gives another advantage over previ- 
ous general techniques for multi-robot path planning, which have been either intractable 
or tailored for very particular domains. 

In this paper we concentrated on mobilization of physical entities in 2-connected 
graphs, which are the settings where Automated Guided Vehicles (see [ 12,221) are 

discussed. Similar ideas can be used for agent mobilization in other contexts, such as 

communication networks. Notice that the 2-connectivity assumption is quite popular in 
such settings as well. Moreover, when the system is not 2-connected the approach is 
to increase the connectivity of the network in order to yield this (and higher) level 
of connectivity [lo]. Our work adopts the artificial social systems approach for the 
coordination of multi-agent systems and shows how it can be applied to yield coordinated 
and useful behavior in the related models. We introduced a general set of environments 

where agents can achieve their goals while avoiding collisions, using the artificial social 

systems approach; the assumptions made about each agent’s perceptual capability have 
been minimal. Moreover, we have shown that the corresponding social laws can be 
efficiently synthesized. 
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