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The Internet exhibits forms of interactions which are not captured by existing
models in economics and artificial intelligence. New models are needed to deal
with these interactions. In this paper we present a new model—distributed games.
In such a model each player controls a number of agents which participate in asyn-
chronous parallel multiagent interactions (games). The agents jointly and strategi-
cally (partially) control the level of information monitoring and the level of recall by
broadcasting messages. As an application, we show that the cooperative outcome of
the Prisoner’s Dilemma game can be obtained in equilibrium in such a setting. Jour-
nal of Economic Literature Classification Numbers: C72, C73, D83. © 1999 Academic

Press

1. INTRODUCTION

The Internet introduces new challenges in artificial intelligence, eco-
nomics, and game theory.1 In particular, it exhibits both parallel and se-
quential interactions. While sequential interactions have been extensively
discussed in the literature, the study of parallel interactions has been ne-
glected so far. New models of economies and games are needed in order to
effectively deal with parallel interactions. In this paper we present one such
new model—distributed games. Our model captures several features of dis-
tributed systems, such as the Internet. Such systems are usually assumed to
be asynchronous systems where agents communicate by broadcasting mes-
sages (Tanenbaum, 1988). To motivate our particular definition, think of
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authors with the participants of the artificial intelligence (AAAI) Spring Symposium, Stanford
University 1997, and with the participants of the international conference of game theory,
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suggestions.
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several users (players) who send software agents2 to participate in auctions
which are held in various locations of the net, and are conducted in a ran-
domly chosen order. This random order of play models a situation where all
auctions are supposed to take place in parallel but, due to the fact that real
distributed systems are asynchronous, are actually held at different time
intervals.3

The agents can communicate by broadcasting messages. A message sent
by an agent of a particular user is not considered to be private information
of the agents of this user.4 In a general distributed game the agents may be
engaged in any type of interaction at each of the locations. More precisely,
a distributed game is defined by the following elements:

(1) A set of players.
(2) A set of locations.
(3) A set of agents for each player, one agent for each location.
(4) A set of games in strategic form with the given set of players, one

for each location.
(5) A set of messages for each player.
(6) A probability distribution over the set of permutations of loca-

tions.

At the initial stage, Nature chooses a permutation according to the given
probability distribution. In the following stages the games in the locations
are played (by the agents) according to the order prescribed by the chosen
permutation. After a game at a location is played, the agents at this location
can send messages. The agents do not appear in the formal definition of
the distributed game [which can be described formally as an extensive game
with simultaneous moves (see, e.g., Osborne and Rubinstein, 1994) with the
given set of players], however its information structure is motivated by their
existence: When an agent is called to choose an action and right after that
to send a message, it is aware of its location. Any additional information
it can use must be extracted from the sequence of messages it receives.
Thus, two histories which generate the same sequence of messages are in

2Roughly speaking, software agents are programs which are designed to serve the goals of
a particular user. These agents may navigate in a computerized network, while transmitting
messages among themselves, and interacting with other agents (which might be controlled
by other users). The design of software agents is one of the most important research and
application directions of the computer industry (CACM, 1994).

3It may also reflect a random decision of the auctions’ organizers.
4One can relax this assumption by introducing probability of detection, which may be player

specific. Our discussion and results hold also for networks where the content of messages
can be encrypted, but the fact a message has been sent cannot be considered as private
information.
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the same information set. We assume that each message has a location
and sender stamps, and that an agent can record the order of arrival of
the messages. For example, consider a particular location. An agent at this
location cannot distinguish between a history in which this location is the
first location to a history in which this location is the last one and no agent
in all other locations sent a message.

Hence, a distributed game is an extensive game with simultaneous moves,
with incomplete information (e.g., about the order of stages) and with a
specific player-symmetric information structure as described above. Such
games have imperfect recall5 because the particular information structure
(motivated by the use of agents) implies that a player does not necessarily
remember what were the previous locations at which he has already played,
and even if he knows that he has already played at a particular location, he
does not necessarily remember what were the actions that were selected at
this location. Notice that in distributed games the players can strategically
decide on the level of recall. This point will be discussed later.

A particular type of a distributed game is a parallel game which is de-
fined by the additional condition that each permutation is equally likely.6

This definition reflects the asynchronous nature of distributed systems. In a
parallel game the interactions are supposed to be completely parallel, but
due to the asynchronous nature of distributed systems there is a stochastic
noise caused mainly by asynchronous clocks, implying sequential interac-
tions. The players are ignorant about the precise nature of the noise and
therefore all they can do is use the principle of indifference (Keynes, 1963).
That is, they assign equal probabilities to all permutations of locations.7 A
distributed game is location-symmetric if the same stage game in strategic
form is played at all locations.

As an application, we analyze a location-symmetric parallel game in
which the same Prisoner’s Dilemma game is played at all locations. We
show that if the number of locations is sufficiently large, the outcome of
cooperation can be obtained in equilibrium. In this equilibrium, an agent
cooperates if and only if it has not gotten a message. If it detects a deviation
from cooperation it immediately broadcasts an alarm message, otherwise it
does not send any message. Note that this equilibrium survives due to the
joint decision of agents not to reveal to their partners and opponents any

5See the discussion at the end of Section 2.
6That is, its probability is 1/n!, where n denotes the number of locations.
7Parallel games model multiagent interactions in computerized distributed systems with

asynchronous clocks (which cause the stochastic noise on order of stages); Each location is
identified with a processor, and each agent which is active at this location, is identified with
a process that runs in the processor. The assumption of asynchronous clocks is typical in
distributed computing (see, e.g., Fagin et al. (1995) for a discussion of this issue in the context
of the theory of knowledge).
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information regarding the number of future interactions, as long as their
opponents cooperate with them. Hence, in equilibrium the agents never
know how many more games are to be played. This lack of knowledge en-
ables cooperation.8 This result is extended to a general folk theorem for
location-symmetric parallel games.

2. DISTRIBUTED GAMES

A distributed game DG is defined by the following elements:

DG1 A finite set of players F = �1; 2; : : : ;m�, where m ≥ 2.

DG2 A finite set of locations L = �1; : : : ; n�, n ≥ 1.

DG3 For each location i a game Gi in strategic form, with the set of
players F . The action set of player j at the game Gi is denoted by Sji . We
assume that Sji contains at least two actions. The payoff function of player
j at Gi is uji : Si → R, where Si =3m

j=1 S
j
i .

DG4 To each player j, a set of agents �ij�i∈L; ij is referred to as the
agent of j at location i.

DG5 For every player j a finite set Mj of messages. We assume that
Mj contains the no-message option, denoted by ϕ, and contains at least
one real message. Thus for every player j, Mj = �ϕ; aj1; : : : ; ajkj�, where
kj ≥ 1. The agents of player j can broadcast messages from Mj .9

DG6 A probability distribution λ on the set PE of n! permuta-
tions of �1; 2; : : : ; n�, where a permutation is a one to one function
r: �1; 2; : : : ; n� → �1; 2; : : : ; n�.

We need the following definition. Consider a distributed game described
by DG1–DG6. We define the message game MG to be the game in strate-
gic form whose players are F . The action set of player j is Mj and the
payoff functions of the players are defined on M =3j∈F Mj , and they are
constantly zero. In the sequel we will refer to the notion of an empty mes-
sage. The empty message is not a message, it is just a way to describe the
event that an agent does not send a message. We now define the rules of
move, the payoffs, and the information structure of the distributed game
DG defined by DG1–DG6.

8Equilibrium of this type is discussed in Nishihara (1997) and in Neyman (1998) (see the
discussion in Section 4).

9Our discussion and results can be easily extended to the case where each agent has its
own set of messages.
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The Rules of Move

The game has n+ 1 stages. At the initial stage (Stage 0). Nature chooses
a permutation r ∈ PE according to the probability distribution λ. Each
additional stage 1 ≤ t ≤ n is divided into two sub-stages, the action stage
t�a� and the message stage t�m�. At stage t�a� the players play the game
Gr�t�, that is, they choose simultaneously an action profile xt ∈ Sr�t�. At
Stage t�m�, which comes after stage t�a�, the players play the game MG.
That is, they choose simultaneously a message profile mt ∈M .

The Payoff Structure

If Nature chooses r, and the players choose the action profiles xt ∈ Sr�t�,
1 ≤ t ≤ n, then player j receives the accumulated payoffs in the stage
games, that is, he receives

∑n
t=1 u

j
r�t��xt�.

The Information Structure

For each r ∈ PE and for each 2 ≤ T ≤ n, let Ha
r �T � = 3T−1

t=1 �Sr�t� ×
M� be the set of histories that can be generated in the game after the
permutation r is chosen at stage 0 and just before the action selection
stage T �a�. When T = 1 the agents at location r�1� face the empty history
denoted by er . Hence, Ha

r �1� = �er�. Let Ha
r =

⋃n
T=1H

a
r �T �. Similarly,

let Hm
r �T � = Ha

r �T � × Sr�T � be the set of histories that can be generated in
DG after the permutation r is chosen and just before the message selection
stage T �m�. Let Hm

r =
⋃n
T=1H

m
r �T �, and let Hr = Ha

r ∪Hm
r .

Let H = ��r; hr�: r ∈ PE;hr ∈ Hr�. Every h ∈ H is a non-null history
in DG. An information structure of a player is a partition of H. Elements
in this partition are called information sets. As all agents at a particular
location receive the same information, the structure of information in a
distributed game is player-symmetric. That is, we have to define only one
partition 5 which is common to all players. We define this partition by us-
ing the concept of signals. With each h ∈ H we associate a signal I�h�.
Two histories are in the same information set if and only if they are associ-
ated with the same signal. We refer to I as the signaling function. We first
define the set Zi of possible signals at location i. Consider an agent at lo-
cation i just before an action stage. This agent knows its location. If it does
not receive any message we denote the associated signal by �i;NM� (“no
message at location i”). Otherwise the agent receives a signal of the form

z = (i; ��i1;m1�; : : : ; �iT ;mT ��
)

(2.1)

of non-null message profiles with a location and sender stamps. Thus, an
agent that receives the signal z given in (2.1), knows that it is located at i,
and that in the chosen permutation r, it comes before it+1, 1 ≤ t < T and
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iT comes before i (that is, r−1�it� < r−1�it+1� < r−1�i�). This agent further
knows that for 1 ≤ t ≤ T , the agent of player j at location it broadcasted the
message mj

t . Let Zai be the set of all signals that are feasible for an agent
at location i just before an action stage. That is, Zai contains the signal
�i;NM� and every signal that is described by (2.1). Similarly, an agent at
location i, at a message selection stage receives a signal in Zai attached with
an action profile from Si. Let Zmi = Zai × Si be the set of all signals that
are feasible for an agent at location i just before a message selection stage.
Let Zi = Zai ∪ Zmi and let Z = ⋃n

i=1Zi. Z is the set of signals. We now
define I:H → Z as follows: Let h = �r; hr� ∈ H. Therefore, for some 1 ≤
T ≤ n, hr ∈ Ha

r �T � or hr ∈ Hm
r �T �. Denote i = r�T �. Assume hr ∈ Ha

r �T �.
If hr = er , I�h� = �i;NM�. Otherwise, hr = �x1;m1�; : : : ; �xT−1;mT−1�.
Let i1 = r�t1�; : : : ; ik = r�tk�, 1 ≤ k ≤ T − 1, be the r-ordered sequence
of locations from which a non-null message profile is broadcasted. That
is, let t1 be the first t for which mt is non-null, then i1 = r�t1�, and for
1 < q ≤ k, tq is the first t > tq−1 for which mt is non-null, and iq = r�tq�.
I�h� is defined to be �i; ��i1;mt1

�; : : : ; �ik;mtk
��� ∈ Zai . If hr ∈ Hm

r �T �,
hr = �h̄r; xT � with h̄r ∈ Ha

r �T � and xT ∈ Si. In this case we define I�h� =
I�r; hr� = �I�r; h̄r�; xT � ∈ Zmi .

In the sequel we make use of the following additional notations and
definitions: Every signal z ∈ Zai is a pair �i; y�, where i ∈ L and y is a
sequence of messages with location and sender stamps. We denote the set
of all such sequences by Ya. That is, Zai = L × Ya. An element of Ya is
called a location-free signal at an action stage.

An Intuitive Demonstration of the Information Structure

It is useful to demonstrate our definition of the information structure in
distributed games by a simple example. Suppose there are four locations
(n = 4), L = �1; 2; 3; 4�, and two players (m = 2). Denote by ij the agent
of player j at location i. Let M1 = M2 = �ϕ;A;B; : : : Z� be the message
sets. Assume i = 4 and that the agents at location 4 are about to choose
their actions in S4 (Agent 4j , j ∈ �1; 2� has to choose an action in S

j
4).

Agent 41 (as well as Agent 42) receives the signal

z = (i; (�i1;m1�; �i2;m2�
)) = (4; (�3; �A;B��; �1; �B;ϕ��)):

That is, i1 = 3, i2 = 1, m1 = �A;B�, and m2 = �B;ϕ�. This agent (as well
as the other agent at location 4) deduces that in the chosen permutation r,
location 3 comes before location 1, and location 1 comes before location 4.
That is, it deduces that the chosen permutation is one of the 4 permutations
(out of 24 possible permutations): r1 = 2314, r2 = 3214, r3 = 3124 or r4 =
3142. In addition, it deduces that the stage games at locations 3 and 1
have already been played. Note that if r = r1, r2, or r3, then it means
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that the game at location 2 is over, but neither of the two agents 21 or 22
sent a message. If the true r is r4, the game at location 2 will be played
after the current stage is over. In addition, Agent 41 knows the messages
from locations 3 and 1, that is, it knows that Agent 31 sent the message A,
agent 32 sent the message B, Agent 11 sent the message B, and Agent 12 did
not send a message. Note that the agents at location 4 may deduce nothing
about the actions chosen at previously played locations. To conclude, these
agents extract the following information about the true history �r; hr�:

(1) r = 2314 and hr = ��x1; �ϕ;ϕ��; �x2; �A;B��; �x3; �B;ϕ���, for
some x1, x2, x3 in S2, S3, S1 respectively, or

(2) r = 3214 and hr = ��x1; �A;B��; �x2; �ϕ;ϕ��; �x3; �B;ϕ���, for
some x1, x2, x3 in S3, S2, S1 respectively, or

(3) r = 3124 and hr = ��x1; �A;B��; �x2; �B;ϕ��, �x3; �ϕ;ϕ���, for
some x1, x2, x3 in S3, S1, S2, respectively, or

(4) r = 3142 and hr = ��x1; �A;B��; �x2; �B;ϕ���, for some x1, x2 in
S3, S1, respectively.

We now define strategies in distributed games.

Strategies

A strategy for player j in DG is a pair σj = �f j; gj�, where f j = �f ji �ni=1
and gj = �gji �ni=1, where f ji :Zai → S

j
i and gji :Z

m
i →Mj . We refer to �f ji ; gji �

as the strategy of Agent ij . That is, for every information signal z ∈ Zai
Agent ij chooses the action f ji �z�, and for every information signal z ∈ Zai
and xi ∈ Si Agent ij broadcasts the message gji �z; xi�.

Equilibrium

Let Hn be the the set of all histories of the form �r; hr�, where hr is a
sequence of pairs of action and message profiles of length n. That is, Hn is
the set of all histories ψ ∈ H of the form

ψ = (r; ��x1;m1�; : : : ; �xn;mn��
)
;

where xt ∈ Sr�t� and mt ∈ M for all 1 ≤ t ≤ n. Every tuple of strategies
σ = �σj�mj=1 defines a probability distribution µσ over Hn. The expectation
operator with respect to µσ is denoted by Eσ . Let r̃ be the random variable
on Hn defined by r̃�ψ� = r, and let Xi, i ∈ L be the random variables
defined by Xi�ψ� = xr−1�i�.



62 monderer and tennenholtz

Let Eji �σ� = Eσ�uji�Xi��, be the expected payoff of player j from location
i when all players use the strategy profile σ . The expected payoff of player
j when all players use the strategy profile σ is denoted by uj�σ�. That is,

uj�σ� =
n∑
i=1

E
j
i �σ�:

Consider a distributed game DG given by DG1–DG6. We can associate
with it a game in strategic form in which the player set is F , the action set
of player j is the set 6j of the strategies of player j in DG, and the payoff
function of j is uj:6 → R, where 6 = 3j∈F 6j . We say that a strategy
profile σ is an equilibrium in DG if and only if it is an equilibrium in the
associated game in strategic form.

Special Types

A distributed game is called a parallel game if each permutation is equally
likely, that is, λ�r� = �1/n!� for every permutation r, where n denotes the
number of locations. This definition reflects the asynchronous nature of
distributed systems: In a parallel game the interactions are supposed to
be completely parallel, but due to the asynchronous nature of distributed
systems there is a stochastic noise, implying sequential interactions. The
players are ignorant about the precise nature of the noise and therefore,
because all locations are symmetric, all they can do is use the principle
of indifference (Keynes, 1963). That is, they assign equal probabilities to
all permutations of locations. Using distributed computing terminology one
can associate each location with a processor, and each agent with a process
of a particular user. Each process has access to the clock of the processor
where it runs, while the clocks of the different processors are not synchro-
nized, as in typical asynchronous distributed systems. A distributed game is
called location-symmetric, if all stage games are identical. That is, Gi = Gl

for all locations 1 ≤ i, l ≤ n. In a location-symmetric distributed game
it is useful to define the concept of location-free strategies. Let DG be
a location-symmetric distributed game. Denote by Sc (“c” for “common”)
the set of action profiles in any location. A strategy σj is location-free if
σ
j
i �i; y�, y ∈ Ya, does not depend on i. That is, σj is location-free if there

exist functions f :Ya → Sc and g:Ya × Sc → Mj such that for every loca-
tion i, f ji �i; y� = f �y� and gji ��i; y�; xc� = g�y; xc�. In our software agents
terminology, a player who uses a location-free strategy sends n copies of
the same software program rather than sending n distinct programs. In a
location-symmetric distributed game, we say that σ is a location-free equi-
librium if it is an equilibrium and σj is a location-free strategy for every
player j.
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Game Theoretic Features

It may be useful to summarize some special game theoretic features of
distributed games. Such games can be described as extensive games with
simultaneous moves (see, e.g., Osborne and Rubinstein, 1994) with incom-
plete information. They possess the additional feature that the information
monitoring is partially controlled by the players via the messages: Classical
repeated games in which the players observe at each stage the whole his-
tory of previous moves are referred to as games with perfect monitoring.
Repeated games with imperfect monitoring are of two types: At the first
type, the structure of the information released to the players after each
stage does not depend on their actions. This is the case, e.g., in repeated
games with observable payoffs and unobserved actions in which after each
stage the players observe the history of all previous payoffs. Another exam-
ple is games with bounded recall (Lehrer, 1988), in which after each stage
the player observes the last k moves. In the other type of imperfect moni-
toring, the structure of monitoring depends on the actions. Such is the case
in distributed games in which the structure of information release regard-
ing a previously active location depends on whether one of the agents at
this location sent a message.10

A distributed game (with at least two locations) has imperfect recall11:
An agent of player j may not remember the actions chosen at previous
locations, though the agent of player j at such previous location has ob-
served some of these actions. Like the concept of monitoring, there are
two types of recall structure. In one of them (as in games with bounded re-
call) the level of recall is action-independent. In the other type (e.g., in a
distributed game) the level of recall depends on the actions. In particular,
in distributed games the use of agents enables the players to jointly com-

10Note that every player has a strategy which guarantees that at every history which is
consistent with this strategy, each of his agents knows the sequence of previous active locations.
In particular, each agent knows the true stage at every stage. In such a strategy every agent of
this player at every location broadcasts some message for every information signal it receives.
However, since all players have symmetric information structure, using such a strategy implies
that at every location, the sequence of past active locations is commonly known by the agents
of all players. Note moreover that if the message space of player j contains a sufficient number
of distinct messages (that is, if the language of player j’s agents is sufficiently rich), then player
j has a strategy which guarantees that it deduces, along every consistent history, the locations
that have already been played and the actions and messages chosen at these locations.

11The concept of imperfect recall and related topics were already discussed in the early
game theory literature, e.g., in Kuhn (1953), Dalkey (1953), Isbell (1957), and Aumann (1964).
The original definition of perfect and imperfect recall (see, e.g., Mertens et al. 1994) applies to
extensive games in which every decision node belongs to a single player. This definition is nat-
urally generalized to extensive games with simultaneous moves and,in particular, to distributed
games.
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mit themselves (by not sending messages) not to remember that they have
already been in a particular location.

Recently, following Piccione and Rubinstein (1997), equilibrium concepts
in games with imperfect recall have been extensively discussed in the lit-
erature. See, e.g., the special issue on imperfect recall (Kalai, 1997). In
particular, there is no agreement about the “right” concept of equilibrium
in such games. Moreover, even the concept of “optimal” strategy in one
person game with imperfect recall is not agreed upon. The debate, how-
ever, concerns abstract games. Our definition of equilibrium seems to us
natural in distributed games in which the players send their agents (pro-
grams) to the locations before the game begins and they cannot replace
them after the game begins.

Our definition of distributed games can be modified in several natural
ways in order to deal with other types of distributed interactions. We discuss
such modifications in Section 6.

3. COOPERATION IN THE PARALLEL PRISONER’S
DILEMMA GAME

In this section we analyze a location-symmetric parallel game with two
players and n locations, L = �1; : : : ; n�, in which at each location the agents
of the players play the Prisoner’s Dilemma game described below12:

D C
D
C

( �a; a�
�0; b�

�b; 0�
�c; c�

)
;

where b > c > a > 0.
As we deal with a parallel game, the probability distribution λ assigns

probability 1/n! to each order of locations. The message sets are Mj , j =
1; 2. We denote the empty message13 by ϕ. We assume that each message
space contains at least one message (hence, each Mj contains at least two
elements, ϕ and a real message).

Consider the following inequality:

b ≤ c + n− 1
2
�c − a�: �EC�

We show that if �EC� is satisfied, then there exists a location-free equilib-
rium σ = �σ1; σ2� which induces the outcome �C;C� at each location.

12Our discussion and results hold for other forms of the Prisoner’s Dilemma. In fact, our
results can be extended to a much larger class of settings, as we prove in the following section.

13Recall that the empty message is not a message, it is just a way to describe the event that
an agent does not send a message.
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Indeed, let a1; a2 be nonempty messages in M1, M2; respectively. For
j = 1; 2, define σj = �σji �ni=1 = ��f ji ; gji ��ni=1 as follows: f ji assigns the ac-
tion C to the information signal �i;NM� of no previous messages and it
assigns the action D to any other information signal in Zai . In addition,
independently of the information signal z ∈ Zai , gji �z; �C;C�� = ϕ, and
g
j
i �z; �C;D�� = gji �z; �D;C�� = gji �z; �D;D�� = aj . Obviously if all agents

obey the strategy profile σ , then the outcome �C;C� is played in every loca-
tion. We proceed to show that player 1 does not have a profitable deviation.
The analogous proof for player 2 is omitted.

Let τ1 = �τ1
i �i∈L = �f τi ; gτi �i∈L be any strategy of player 1. Obviously

u1�σ1; σ2� = nc. We proceed to show that

u1�τ; σ2� ≤ nc:
Let DEVτ be the set of locations i at which the agent of player 1 chooses

D when it does not receive any message. That is, DEVτ is the set of all
i for which f τi �i;NM� = D. If DEVτ is empty, then player 1 cannot get
more than nc because at each of the n locations either he chooses C (and
get at most c) or he chooses D after it receives some real messages. In
the latter case player 2 who sticks to σ2 also chooses D, and thus player 1
gets a. Since a < c, he cannot get more than nc when he uses τ and player
2 uses σ2. Assume that DEVτ is not empty and let k, 1 ≤ k ≤ n, be the
number of locations in DEVτ. Let t̃ be the random variable describing the
first occurrence of a location from DEVτ. That is, t̃ = t, 1 ≤ t ≤ n, if
r�t� ∈ DEVτ and r�s� 6∈ DEVτ for s < t. Given that t̃ = t, player 1 receives
at most t − 1 times the value c, one time the value b, and n− t times the
value a. Therefore the expected payoff of player 1 given that t̃ = t, denoted
by vτt , satisfies:

vτt ≤ vt = �t − 1�c + b+ �n− t�a: (3.1)

If vτt < vt , then either at some stage s < t player 1 chooses to send a
message, causing the other player to switch to D, or at some stage s > t,
player 1 chooses c after receiving a message. Without loss of generality we
can consider only deviations to strategies τ for which vτt = vt . Therefore
we can assume that according to τ , player 1’s deviations involve the action
selecting strategies and not the message selecting strategies. Moreover, it
can be assumed that these deviations have the following form: the agents of
player 1 use D at every location i ∈ DEVτ, independently of the information
signal. The other agents of player 1 use their part of the strategy σ1. Hence,
the expected payoff of player 1 upon a deviation to τ is

vτ =
n∑
t=1

vtp
τ
t ;



66 monderer and tennenholtz

where pτt = µ�τ;σ2��t̃ = t�. From symmetry, player 1 receives the same ex-
pected payoff at two such strategies τ and τ′ for which the sets DEVτ and
DEVτ′ contain k locations each. Therefore, we can denote by vk the ex-
pected value of player 1 upon a deviation at k locations. That is,

vk =
n∑
t=1

vtp
k
t ; (3.2)

where pkt = µ�τ;σ2��t̃ = t�, for some strategy τ for which DEVτ contains k
locations.

We now show that the expected value of player 1 resulting from a devi-
ation in k locations is nonincreasing in k. That is, vk ≥ vk+1 for 1 ≤ k ≤
n− 1. Indeed, denote by Fkt the probability of first defection at stage t or
before. That is,

Fkt =
t∑
s=1

pks :

It is easily verified that Fk+1 stochastically dominates Fk (that is, Fkt ≤
Fk+1
t for every 1 ≤ t ≤ n). Moreover, because b > c > a > 0, �vt�nt=1 is

an increasing sequence. Therefore (3.2) implies the desired monotonicity.
Hence, it suffices to show that a deviation at precisely one location is not
profitable, that is, v1 ≤ nc. Since p1

t = �1/n� for all t, we get from (3.1) and
(3.2) that

v1 = 1
n

n∑
t=1

vt =
1
n

n∑
t=1

(
t�c − a� + na− c + b):

It follows that the equilibrium condition is

n+ 1
2
�c − a� + na− c + b ≤ nc:

That is,

b ≤ c + n− 1
2
�c − a�:

Thus the outcome of cooperation at all locations can be obtained in equi-
librium if the number of locations is sufficiently large. The precise meaning
of “sufficiently large” is given by �EC�:
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4. COOPERATION IN THE PRISONER’S DILEMMA GAME:
RELATED LITERATURE

It is instructive to compare our result with other cooperation results for
the Prisoner’s Dilemma game, obtained by assuming finite sequentiality
and bounded rationality.14 Radner (1986) showed that when we are ready
to settle for ε equilibrium, then when the number of repetitions increases
the corresponding sets of ε equilibria allow longer and longer periods of
cooperation. Kreps et al. (1982) showed that if we assume that with an arbi-
trary small but positive exogenous probability, one of the players is playing
tit-for-tat rather than maximizing, then with sufficiently long repetition, all
sequential equilibria outcomes are close to the cooperative outcome (see,
however, Fudenberg and Maskin, 1986). Aumann and Sorin (1989) proved
that when every player ascribes a small positive exogenous probability to his
opponent being an automaton with bounded recall, then every equilibrium
in sufficiently long repetition of the game is close in the payoff space to the
cooperative outcome. Neyman (1985) deals with finitely repeated Prisoner’s
Dilemma games in which the players are restricted to use automata with
a fixed number of states. When the number of stages is large relative to
the number of states,15 the automata cannot effectively count the number
of previous stages, and as in our case, this ignorance regarding the number
of stages enables cooperation (in all stages) in equilibrium. Hence in the
automaton model the players are not able to process the available infor-
mation, while in our model, the players jointly and strategically decide not
to obtain this information. We think that our model is more realistic in the
distributed systems (e.g., Internet) setup in which it is assumed that players
broadcast messages and act in a parallel asynchronous setting, while con-
trolling software agents with a tremendous counting ability. Zemel (1989)
used the finite automata model of Neyman with the additional feature of
allowing the players to send and receive messages. This additional feature
allows cooperation by saturating the computational resources of the players
and thus preventing them from utilizing complex strategies.

The recent papers of Neyman (1998) and of Nishihara (1997) are related
to our work. Neyman (1998) proved that the players in a repeated Prisoner’s
Dilemma can (almost) reach the cooperation outcome if they do not share
common knowledge regarding the true number of stages. Roughly speak-
ing, our model exhibits a “real life” situation where such lack of common
knowledge is possible. Note, however, that in our model this lack of com-

14The folk theorems (see e.g., Aumann and Shapley, 1994 and Rubinstein, 1979) show that
cooperation is possible in equilibria of the infinite repeated game.

15Or relative to the number of states to the power of 1/ε, when we are ready to settle for
ε equilibrium.
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mon knowledge is not exogenous, but it is the result of the strategic deci-
sions of the players to let their agents and opponents be ignorant about the
number of (future) stages. Nishihara (1997) modified a one-stage N-person
Prisoners’ Dilemma game to a game in which the players move sequentially
(i.e., there are N stages). He showed that if the players are randomly or-
dered according to the uniform distribution of orders, and at each stage
each player receives a signal of defection (if such a defection occurred in
previous stages), then the players can cooperate in equilibrium. Note that
the signals in Nishihara’s model are exogenously determined, while in our
model they are determined by the players. In Nishihara’s model there are
no simultaneous moves, and therefore the concept of common knowledge
is reduced to the concept of knowledge. In this sense, the lack of com-
mon knowledge of the number of future stages enables cooperation in his
model. As in Neyman’s model (and unlike our model) this lack of com-
mon knowledge is exogenous. Finally, the phenomenon of imperfect recall
which is essential in our model does not appear in Neyman’s model or in
Nishihara’s.

As for the structure of the strategy that leads to cooperation, one may
wish to notice that it has some similarity with the grim strategy (see Osborne
and Rubinstein (1994) for a description of this strategy in the context of the
Prisoner’s Dilemma). However, the exact strategy we employ relies heavily
on the structure of distributed games, and makes use of its special features.

5. A GENERAL FOLK THEOREM

The results of Section 3 can be generalized to a folk theorem for location-
symmetric parallel games.

Theorem A. Let G be a game in strategic form with the player set F
and with the action sets Sjc , j ∈ F . For every n ≥ 1, let DGn be the location-
symmetric parallel game defined by DG1−DG6 with Gi = G for every 1 ≤
i ≤ n. Let b ∈ Sc = ×j∈FSjc , be an equilibrium in G. Let x ∈ Sc satisfy

uj�x� > uj�b� for every j ∈ F:
Then, there exists a positive integer N such that for every n ≥ N there exists
a location-free equilibrium σ in DGn, at which the outcome x is reached at
each location.

Proof. Let aj ∈ Mj , j ∈ F be an arbitrary selection of nonempty mes-
sages. For every n ≥ 2 and for every j, define a location-free strategy
σj = σ�n�j = �f j; gj� in DGn, as follows: f ji �i;NM� = xj , f ji �z� = bj for
z ∈ Zai with z 6= �i;NM�, gji �z; x� = ϕ for every z ∈ Zai , and gji �z;w� = aj



distributed games 69

for every z ∈ Zai and for every w ∈ Sc with w 6= x. It is obvious that if all
players use their part in σ�n�, the outcome x is achieved at all locations.
The proof that for sufficiently large n, σ�n� is an equilibrium is similar to
the analogous proof for the parallel Prisoner’s Dilemma game, and there-
fore it is omitted.

6. REMARKS

Cryptography

The assumption that messages are not private information motivates
some of cryptography theory (e.g., Diffie and Hellman, 1976). In the model
of distributed games considered in this paper we do not distinguish between
a message (e.g., a stream of bits) and its content. In more advanced models
one may wish to deal with asymmetric information setup, where only the
agents of the same player can decrypt their messages. The results proved
in Sections 3 and 5 hold for such models too. Notice that if the language
of messages is rich enough, agents can tell one another about their exact
state. Hence, given cryptographic techniques, if agents of player i will send
(encrypted) messages then the best they can do in this case is to send their
full information. Our results show however that it may become strategically
irrational to send any message.

Extensions

It is possible to extend the definition of distributed games in many ways.
For example, one can replace the assumption that messages are not private
information by the assumption that the messages can be received with some
given probability distribution, that may be player-specific.

A more essential change in the definition of distributed game is obtained
if we introduce some cost for every player who wishes his agents to receive
messages sent by other players’ agents.

Refinements

It can be easily verified that the equilibrium given in the proof of Theo-
rem A is a sequential equilibrium, because the “punishing” action profile b
is an equilibrium in the one stage game.

More General Folk Theorems

The proof of the folk theorem, Theorem A, is based on the existence of
“punishing actions”, bj , j ∈ F , which are in equilibrium in the stage game.
Proofs of the folk theorem for repeated games with complete information
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work without the requirement that the punishing actions are in equilib-
rium. However, in a repeated game with complete information, the players
always know who were the deviators and therefore they can punish, say
the first (in some arbitrary order of the players) to deviate. Such punishing
strategies may not be feasible in parallel location-symmetric games, unless
the message sets are rich enough. In the latter case, agents who observe a
defection can reveal the identity of the “first deviator” by broadcasting an
appropriate message.

The proof of Theorem A is based on the assumption that the agents are
completely ignorant about the precise nature of the stochastic noise, caused
by asynchronous clocks, and therefore they use the uniform distribution
over permutations. When the locations are not symmetric (e.g., each is
represented by a different type of processor), the players may have a better
estimate about the nature of randomness. Therefore, it is interesting to
investigate the class of (sequences of) distributions for which Theorem A
is valid.

Modifications

Parallel games capture three main features of computerized distributed
systems: Asynchronous clocks and activities, software agents,16 and mes-
sages. Combined together, these features, translated to a game theoretic
language, make the folk theorem work. Each of these features, on its own,
and any two of these features give rise to a particular type of game. For ex-
ample, one may wish to analyze distributed games with synchronized clocks.
In such games the probability distribution λ is concentrated at a particular
permutation. Such a game captures the features of agents and broadcasting.

Parallel Auctions

Our model of parallel games can be applied to parallel auctions, in which
information about one auction may leak to other auctions. The folk theo-
rem suggests that a collusion outcome may be obtained in equilibrium in
such setting.
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