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Abstract

We introduce efficient learning equilibrium (ELE), a normative approach to learning in non-
cooperative settings. In ELE, the learning algorithms themselves are required to be in equilibrium. In
addition, the learning algorithms must arrive at a desired value after polynomial time, and a deviation
from the prescribed ELE becomes irrational after polynomial time. We prove the existence of an ELE
(where the desired value is the expected payoff in a Nash equilibrium) and of a Pareto-ELE (where
the objective is the maximization of social surplus) in repeated games with perfect monitoring. We
also show that an ELE does not always exist in the imperfect monitoring case. Finally, we discuss
the extension of these results to general-sum stochastic games.
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1. Introduction

Reinforcement learning in the context of multi-agent interaction has attracted the
attention of researchers in cognitive psychology, experimental economics, machine
learning, artificial intelligence, and related fields for quite some time [7,18]. Much of this
work uses repeated games [6,11] and stochastic games [3,17,22,26] as models of such
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interactions. The literature on learning in games in game theory [11] is mainly concerned

with the understanding of learning procedures that if adopted by the different agents will
converge at the end to an equilibrium of the corresponding game. The game itself may be
known; the idea is to show that simple dynamics lead to rational behavior, as prescribed
by a Nash equilibrium. The learning algorithms themselves are not required to satisfy any
rationality requirement; it is what they converge to, if adopted by all agents that should be
in equilibrium.

When facing uncertainty about the game that is played, game-theorists adopt a
Bayesian approach. The typical assumption in that approach is that there exists a
probability distribution on the possible games, which is common-knowledge. The notion of
equilibrium is extended to this context of games with incomplete information, and is treated
as the appropriate solution concept. In this context, agents are assumed to be rational agents
adopting the corresponding (Bayes-) Nash equilibrium, and learning is not an issue.

Our major claim is that the game-theoretic approach is not in line with the goals
of multi-agent reinforcement learning research in AI and must be modified. First, the
Bayesian approach used to model partial information is not in line with the common
approach in theoretical computer science and computational learning for dealing with
uncertainty. Second, the descriptive motivation underlying learning research in game-
theory differs considerably from the normative motivation for learning research in AI, and
these differences have important ramifications. We now explain these issues in more detail.

First, consider the Bayesian model of partial information. To date, most work in
machine learning, and in particular, work on single-agent reinforcement learning has taken
a different approach, motivated largely by work on online algorithms in computer science.
Here, no distribution is assumed over the uncertain entities, and instead, our goal is to
approach the behavior of an agent with complete information as closely and as quickly.
Indeed, AI researchers have adopted this non-Bayesian approach in their work on learning
in games, looking for algorithms that converge to an appropriate equilibrium in any game
out of a class of relevant games; and we follow suit. However, researchers in multi-agent
reinforcement learning did choose to adopt other assumptions made by game-theorists,
despite the fact that here the differences are much more fundamental.

Work on learning in games started with descriptive motivation in mind. That is, its
goal was to show that people who use simple heuristic rules for updating their behavior
in a multi-agent setting (i.e., in a game) will eventually adopt behavior that corresponds
to some appropriate equilibrium behavior. If that is the case, economic models based on
equilibria concepts are, in some sense, justified. The assumption that all agents use the
same learning rule is justified by the fact that all agents involved are people—i.e., they are
all designed similarly. But in AI we are not concerned with descriptive models of human
behavior—we are interested in designing artificial agents. Except in the case of cooperative
systems, we have no reason to believe that agents designed by different designers will all
employ the same learning algorithms. Moreover, one should view the designer’s choice
of learning algorithm for its agent as a fundamental decision that should follow normative
criteria. Indeed, from the AI perspective, the choice of a learning algorithm is a basic action
we take in a game we play against other agent designers.

There is another related point. Game-theorists adopting the descriptive stance are not too
concerned with how quickly a learning rule leads to convergence—after all, we had ages
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to evolve our behavior. But an agent designer wants its agent to learn quickly. He does

not care about its agent’s “offsprings”. Thus, in AI, speed of convergence is of paramount
importance.

To better align the research methodology in multiagent reinforcement learning with the
AI perspective, we present in this paper a non-Bayesian normative approach to learning
in games. Our approach makes no assumptions about the distribution of possible games
that may be played—making it more reflective of the setting studied in machine learning
and AI and in the spirit of work on online algorithms in computer science—and treats the
choice of a learning algorithm itself as a game. More specifically, we adopt the framework
of repeated games, and view the learning algorithm as a strategy for an agent in a repeated
game. This strategy takes an action at each stage based on its previous observations, and
initially has no information about the identity of the game being played.

Given the above, the following are natural requirements for the learning algorithms
provided to the agents:

1. Individual rationality: The learning algorithms themselves should be in equilibrium.
It should be irrational for each agent to deviate from its learning algorithm, as long as
the other agents stick to their algorithms, regardless of what the actual game is.

2. Efficiency:
(a) A deviation from the learning algorithm by a single agent (while the others stick

to their algorithms) will become irrational (i.e., will lead to a situation where the
deviator’s payoff is not improved) after polynomially many stages.

(b) If all agents stick to their prescribed learning algorithms then the expected payoff
obtained by each agent within a polynomial number of steps will be (close to) the
value it could have obtained in a Nash equilibrium, had the agents known the game
from the outset.

A tuple of learning algorithms satisfying the above properties for a given class of
games is said to be an Efficient Learning Equilibrium (ELE). Notice that the learning
algorithms should satisfy the desired properties for every game in a given class despite
the fact that the actual game played is initially unknown. Such assumptions are typical
to work in machine learning. What we borrow from the game theory literature is the
criterion for rational behavior in multi-agent systems. That is, we take individual rationality
to be associated with the notion of equilibrium. We also take the equilibrium of the
actual (initially unknown) game to be our benchmark for success; we wish to obtain a
corresponding value although we initially do not know which game is played. The idea
above constitutes the major conceptual contribution of this paper.

In the following section, we provide a short review of basic notions in game-theory. In
the remaining sections we formalize the notion of efficient learning equilibrium, and show
that it is not devoid of content, i.e., we prove the existence of an ELE for a general class of
games—the class of repeated games with perfect monitoring. We also show that there are
classes of games in which an ELE does not exist. Then, we generalize our results to the
context of Pareto-ELE (where we wish to obtain maximal social surplus). We also discuss
the extension of our results to general-sum stochastic games. Technically speaking, the
results we prove rely on a novel combination of the so-called folk theorems in economics,
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and a novel efficient algorithm for the punishment of deviators in games which are initially

unknown.

2. Basic notions in game-theory

Game-theory provides a mathematical formulation of multi-agent interactions and
multi-agent decision making. Here we review some of the basic concepts. For a good
introduction to the area, see, e.g., [25].

A game is a formal description of an interaction between a set of agents. The rules of
the game describe the order of moves by the agents, the available choices at each move,
the information available to each agent at each point, and the final outcome for each agent
(described by a pay-off function). In order to abstract away the particular order of moves,
so as to be able to conveniently treat different games in a uniform manner, we employ
the description of a game in strategic form. A game in strategic form consists of a set
of players I , a set of actions Ai for each i ∈ I , and a payoff function Ri :×i∈IAi → R

for each i ∈ I . We let A denote the set ×i∈IAi of joint actions. Intuitively, each a ∈ Ai

denotes a complete policy for playing the game for agent i , and describes how the agent
would act in each possible situation that could arise in the course of playing the game. Such
actions are often referred to as strategies. The resulting description is very simple, though
not necessarily compact, and we adopt it in the rest of this paper.

When considering the actions an agent has to choose from in a game, we include
not only the standard actions (referred to as pure actions), but also mixed actions, i.e.,
probability distributions over pure actions. The payoff function is extended to this extended
set of actions naturally using the expectation operator.

When there are only two players, the game can be described using a (bi)-matrix whose
rows correspond to the possible actions of the first agents and whose columns correspond
to the possible actions of the second agent. Entry (i, j) contains a pair of values denoting
the payoffs to each agent when agent 1 plays action i and agent 2 plays action j . In the rest
of this paper, we concentrate on two-player games. In addition, we make the simplifying
assumption that the action set of both players is identical. We denote this set by A. The
extension to different sets is trivial.

In Fig. 1 we see a number of examples of two-player games. The first game is a zero-
sum game, i.e., a game in which the sum of the payoffs of the agents is 0. This is a game
of pure competition. The second game is a common-interest game, i.e., a game in which
the agents receive identical payoffs. The third game is a well-known general-sum game,
the prisoners’ dilemma. In this case, the agents are not pure competitors nor do they have
identical interests.

A basic concept in game-theory is that of a Nash equilibrium. A joint action a ∈ A is
said to be a Nash equilibrium if for every agent i and every joint action a′ such that a′
differs from a in the action of agent i alone, it is the case that Ri(a) � Ri(a

′). Thus, no
agent has motivation to unilaterally change its behavior from a. A basic result of game
theory is that every n-person game in strategic form, in which the agents’ set of action
is finite possesses a Nash equilibrium in mixed strategies (where each agent can select a
probability distribution of its available actions) [24]. Unfortunately, in general, there can be
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(
5, −5 3, −3

)

M1 = −3, 3 −2, 2

M2 =
(

5, 5 6, 6
−3, −3 2, 2

)

M3 =
(

2, 2 −10, 10
10, −10 −5, −5

)

Fig. 1.

many Nash equilibria. Thus, while Nash equilibria are stable in some respect, this does not
imply that any particular Nash equilibrium corresponds to the “right” or “recommended”
behavior for the agents in this game. A major issue in the theory of general-sum games
is what is a normatively appropriate behavior in games with diverse equilibria. There
are special cases where the Nash equilibrium possesses additional properties that make it
attractive. For instance, in zero-sum games, all Nash equilibria provide the same payoff to
the agents. Moreover, this payoff is identical to the agent’s probabilistic safety level—i.e.,
the maximal value it can guarantee to itself, regardless of the other agent’s actions.

In order to model the process of learning in games, researchers have concentrated
on settings in which agents repeatedly interact with each other—otherwise, there is no
opportunity for the agent to improve its behavior.1 In the most popular model, the agents
repeatedly play a game, each time observing their reward and, possibly, the other agent’s
actions. In the classic work on learning in game-theory, the agents select their behavior in
the next iteration of the game based on the result of previous iterations using some simple
update rule. Typically, these studies had the goal of showing that some simple update
rule leads the agents to eventually adopt some Nash equilibrium or that the long-term
average behavior of the agents corresponds to some Nash equilibrium. Typically, the goal
of such studies has been to justify the use of Nash equilibria in economic modeling. The
repeated-games model has been popular with AI researchers too, although more recently,
the stochastic, or Markov-game model has attracted the attention of many researchers. In
the stochastic game model, the agents also engage in a series of games. However, the games
the agents play can be different at each stage. In fact, the nature of each game depends
probabilistically on the identity of the previous game and the agents’ joint action in that
game. We consider both repeated and stochastic games in this paper.

3. Efficient learning equilibrium: definition

In this section we develop a definition of efficient learning equilibrium in the context of
two-player repeated games. The generalization to n-player repeated games is immediate,

1 “Learning” in settings in which the agent has a small number of opportunities to observe the game and
improve its behavior is usually modeled as a game with incomplete information. As we noted earlier, in this case
the agent is assumed to have a probability distribution over the possible values of the missing information, such
as the payoffs. The standard theory has been extended to handle this case.
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but requires additional notation, and will not be presented here. An extension to stochastic

games appears in Section 7.

Recall that in a repeated game (RG) the players play a given game G repeatedly. We
can view a repeated game, with respect to a game G, as consisting of an infinite number
of iterations, at each of which the players have to select an action in the game G. After
playing each iteration, the players receive the appropriate payoffs, as dictated by that
game’s matrix, and move to the next iteration. For ease of exposition we normalize both
players’ payoffs in the game G to be non-negative reals between 0 and some positive
constant Rmax. We denote this interval of possible payoffs by P = [0,Rmax]. In a perfect
monitoring setting, the set of possible histories of length t is (A2 × P 2)t , and the set of
possible histories, H , is the union of the sets of possible histories for all t � 0, where
(A2 × P 2)0 is the empty history. Namely, the history at time t consists of the history of
actions that have been carried out so far, and the corresponding payoffs obtained by the
players. Hence, in a perfect monitoring setting, a player can observe the actions selected
and the payoffs obtained in the past, but does not know the game matrix to start with. In
an imperfect monitoring setup, all that a player can observe following the performance of
its action is the payoff it obtained and the action selected by the other player. The player
cannot observe the other player’s payoff. An even more constrained setting is that of strict
imperfect monitoring, where the player can observe its action and its payoff alone. The
definitions of possible histories for an agent in both imperfect monitoring settings follow
naturally. Given an RG, a policy for a player is a mapping from H , the set of possible
histories, to the set of possible probability distributions over A. Hence, a policy determines
the probability of choosing each particular action for each possible history. Notice that a
learning algorithm can be viewed as an instance of a policy.

We define the value for player 1 of a policy profile (π,ρ), where π is a policy for
player 1 and ρ is a policy for player 2, using the expected average reward criterion as
follows: Given an RG M and a natural number T , we denote the expected T -iterations
undiscounted average reward of player 1 when the players follow the policy profile (π,ρ),
by U1(M,π,ρ,T ). The definition for player 2 is similar. We define

Ui(M,π,ρ) = lim inf
T →∞ Ui(M,π,ρ,T ) for i = 1,2.

A policy profile (π,ρ) is a learning equilibrium if

∀π ′, ρ′, U1(M,π ′, ρ) � U1(M,π,ρ), and U2(M,π,ρ′) � U2(M,π,ρ)

for every game matrix M (defined over the set A of actions, and the possible payoffs).
Our first requirement is that learning algorithms will be treated as strategies. In order

to be individually rational they should be the best response for one another. In addition,
they should rapidly obtain a desired value. The identity of this desired value may be a
parameter. We now take a natural candidate, the Nash equilibrium of the game. Another
appealing alternative will be discussed later. Assume we consider games with k actions,
A = {a1, . . . , ak}. For every repeated game M , let n(G) = (N1(G),N2(G)) be a Nash
equilibrium of the (one-shot) game G associated with M , and denote by NV i (n(G))

the expected payoff obtained by agent i in that equilibrium. A policy profile (π,ρ) is
an efficient learning equilibrium (ELE) if for every ε > 0, 0 < δ < 1, there exists some
T > 0, polynomial in 1/ε, 1/δ, and k, such that for every t � T and game matrix G (and
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its corresponding RG, M), Ui(M,π,ρ, t) � NV i (n(G)) − ε for i = 1,2, for some Nash

equilibrium n(G), and if player 1 deviates from π to π ′ in iteration l, then

U1(M,π ′, ρ, l + t) � U1(M,π,ρ, l + t) + ε

with a probability of failure of at most δ. And similarly, for player 2.
Notice that a deviation is considered irrational if it does not increase the expected

payoff by more than ε. This is in the spirit of ε-equilibrium in game theory, and
is done in order to cover the case where the expected payoff in a Nash equilibrium
equals the probabilistic maximin value.2 In all other cases, the definition can be
replaced by one that requires that a deviation will lead to a decreased value, while
obtaining similar results. We have chosen the above in order to remain consistent
with the game-theoretic literature on equilibrium in stochastic contexts. Notice also,
that for a deviation to be considered irrational, its detrimental effect on the deviating
player’s average reward should manifest in the near future, not exponentially far in the
future.

The above captures the insight of a normative approach to learning in non-cooperative
setting. We assume that initially the game is unknown, but the agents will have learning
algorithms that will rapidly lead to the values the players would have obtained in a
Nash equilibrium had they known the game. Moreover, as mentioned earlier, the learning
algorithms themselves should be in equilibrium.

Since learning algorithms are in fact strategies in the corresponding (repeated) game, we
in fact require that the learning algorithms will be an ex-post equilibrium in a (repeated)
game in informational form [16], and in particular that each strategy will be the best-
response against the other agents’ strategies regardless of what the payoff matrix is. This
point will be discussed in more detail in Section 8.

4. Efficient learning equilibrium: existence

The definition of ELE is of lesser interest if we cannot provide interesting examples of
ELE instances. In this section we prove the following constructive result:

Theorem 1. There exists an ELE for any perfect monitoring setting.

Below we describe a concrete algorithm with this property.
Our algorithm is based on a combination of the so-called folk theorems in economics

and a novel, efficient punishment mechanism which ensures the efficiency of our
approach.3 In the folk theorems (e.g., see [12] and the extended discussion in [13]) the basic
idea is that any strategy profile that leads to payoffs that are greater than or equal to the
security level (probabilistic maximin) values that the agents can guarantee themselves can
be obtained by directing the agents to use the prescribed strategies, and telling each agent to

2 The probabilistic maximin value for player 1 is defined as maxπ minρ Ui(M,π,ρ, t) where π and ρ range
over the set of policies for players 1 and 2, respectively. The definition for player 2 is similar.

3 Efficiency here refers to the number of iterations the punishment behavior requires to attain its aim.
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punish the other agent if it turns out to deviate from that behavior; the punishment remains

a threat that will not be followed in equilibrium and as a result the desired strategy profile
will be executed. To use this idea in our setting we need some technique for punishing
without (initially) knowing the payoff matrix; moreover we need to devise an efficient
punishment procedure for that setting.

Recall that we consider a repeated game M , where at each iteration G is played. In what
follows, we often use the term agent to denote the player using the algorithm in question,
and the term adversary to denote the other player. Both players have a set A = {a1, . . . , ak}
of possible actions.

Consider the following algorithm, termed the ELE algorithm.

The ELE algorithm:
Player 1 performs action ai one time after the other for k times for i = 1,2, . . . , k. In

parallel to that player 2 performs the sequence of actions (a1, . . . , ak) k times.
If both players behave according to the above, a Nash equilibrium of the (now revealed)

game is computed, and the players behave according to the corresponding strategies
from that point on. When several Nash equilibria exist, one is selected by using a
shared selection algorithm. If one of the players—whom we refer to as the adversary—
deviates from the above, the other player—whom we refer to as the agent, acts as
follows: The agent replaces its payoffs in G by the complements to Rmax of the
adversary payoffs. Hence, the agent will treat the game as a constant-sum game where
its aim is to minimize the adversary’s payoff. Notice that these payoffs might be
unknown. Below we will use G and M to refer to that modified game, and describe
how the agent will go about minimizing the adversary’s payoff:

Initialize: Construct the following model M ′ of the repeated game M , where the game
G is replaced by a game G′ where all the entries in the game matrix are assigned
the rewards (Rmax,0). In addition, we associate a boolean valued variable with each
joint-action {assumed, known}. This variable is initialized to the value assumed.

Repeat:
Compute and Act: Compute the optimal probabilistic maximin of G′ and execute it.
Observe and update: Following each joint action do as follows: Let a be the action

the agent performed and let a′ be the adversary’s action. If (a, a′) is performed
for the first time, update the reward associated with (a, a′) in G′, as observed, and
mark it known.

Claim 1. The ELE algorithm, when adopted by both players, is indeed an ELE.

Much of the proof of this theorem, which is non-trivial, rests on showing the agent’s
ability to punish the adversary quickly. The details are presented in Appendix A.

Notice that an ELE needs not be unique. Indeed, as can be easily seen from our
construction, any Nash equilibrium of the one-shot game can be the basis for generating an
ELE by employing an appropriate punishment phase. In some applications it is natural to
assume a correlation device that will facilitate the selection of a particular ELE. This point
will be discussed in Section 8.
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5. Imperfect monitoring
The ELE algorithm of the previous section uses the agent’s ability to view its adversary’s
actions and payoffs. A natural question is whether this ability is required for the existence
of an ELE. In this section we show that in general, perfect monitoring is required, but there
are special classes of games in which an ELE exists with imperfect monitoring.

We start with the general case:

Theorem 2. An ELE does not always exist in the imperfect monitoring setting.

Proof. In order to see the above consider the following games:

1. G1:

M1 =
(

6, 0 0, 100
5, −100 1, 500

)
.

2. G2:

M1 =
(

6, 9 0, 1
5, 11 1, 10

)
.

The payoffs obtained for a joint action in G1 and G2 are identical for player 1 and are
different for player 2. The only equilibrium of G1 is where both players play the second
action, leading to (1,500). The only equilibrium of G2 is where both players play the first
action, leading to (6,9) (these are unique equilibria since they are obtained by removal of
strictly dominated strategies).

Now, assume that an ELE exists, and look at the corresponding policies of the players
in that equilibrium. Notice that in order to have an ELE, we must visit the entry (6,9) most
of the times if the game is G2 and visit the entry (1,500) most of the times if the game
is G1; otherwise, player 1 (respectively player 2) will not obtain high enough value in G2
(respectively G1), since its other payoffs in G2 (respectively G1) are lower than that.

Given the above, it is rational for player 2 to deviate and pretend that the game is always
G1 and behave according to what the suggested equilibrium policy tells it to do in that case.
Since the game might be actually G1, and player 1 can not tell the difference, player 2 will
be able to lead to playing the second action by both players for most times also when the
game is G2, increasing its payoff from 9 to 10, contradicting ELE. �

But while our approach is not Bayesian, it does not exclude the possibility that the agent
knows that it is participating in a game from a particular class. Thus, there may be classes
of repeated games for which an ELE exists. In particular, consider the class of repeated
common-interest games. These are repeated games M where the underlying game G is a
common-interest game, i.e., a game in which both players always receive identical payoffs.
In this setting our definition of imperfect and perfect monitoring denote the same setting—
if the player knows its payoff, it knows its adversary’s payoff as well. Thus, we examine
the case of strict imperfect monitoring. Recall that in this setting, the player knows only its
action and its payoff.
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Theorem 3. There exists ELE for the class of common-interest games under strict imperfect

monitoring.

Proof. The idea is quite simple and, surprisingly, has not been proposed before, while
other, more complex and less efficient approaches have been proposed. It does require
knowledge of the number of actions available to each agent (or a polynomial bound on
them). The algorithm works as follows: First, the agents go through a series of random
play. They do so sufficiently many times to ensure that the probability that all joint-
actions have been played is greater than 1 − δ. During this phase, each agent maintains
information about the best payoff obtained so far, and the action it used when this payoff
was first obtained. Once the exploration phase is over with, the agent plays this best action
repeatedly.

This is a learning equilibria because the average reward this learning strategy leads to is
the maximal average reward for every agent. Thus, no agent has any motivation to deviate
from it. It is an ELE because a polynomial number of steps is required to attain this average
reward (see below) and any deviation will immediately reduce the average reward of the
agent. We need only a polynomial number of steps to approximately obtain the maximal
average reward because we need only O(k4 · log(k2/δ)) steps of random play to ensure that
all joint-actions have been played with a probability of at least 1 − δ. This follows from the
following. Given large enough k, we get that the probability that after k2m trials the agents
will not play some previously unplayed joint action can be approximated by e−m. Hence,
we get that after O(k2 log(k2/δ)) the probability we will not learn the outcome associated
with a new joint action can be approximated by δ/k2. By repeating the process k2 times
we get the desired result. �

6. Pareto-ELE

The previous sections dealt with ELE in the perfect and imperfect monitoring settings.
In both cases we were interested in having a learning procedure that will enable the agents
to obtain expected payoffs as the ones they would have obtained in a Nash equilibrium, had
they known the game. A more ambitious objective is the following. Let pi(a, b) denote the
payoff for player i in the game in question when player 1 plays a and player 2 plays b.
We say that a pair of actions (a, b) is (economically) efficient, if p1(a, b) + p2(a, b) =
maxs∈A,t∈A p1(s, t) + p2(s, t). That is, if the total payoff for both agents is maximized.

It is easy to see that if all the agents can do is to choose an action in G, then there is
no general way to guarantee that agents will behave in an economically efficient manner.
This is due to the fact that it may be the case that although (a, b) is the only economically
efficient behavior, performing a (respectively b) by agent 1 (respectively 2) is irrational:
p1(a, b) (respectively p2(a, b)) may be lower than the probabilistic maximin value that
agent 1 (respectively 2) can guarantee itself.

The classical approach in economics for dealing with economic (in)efficiency is by
introducing side (monetary) payments. Formally, part of the strategy of agent i is a function
A2 × P 2 → R+, i.e., agent i is instructed to pay a certain amount of money to the other
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agent as part of its strategy.4 If an agent’s reward is p and he is paid c (where c can be

positive, negative, or zero) then his utility is assumed to be u = p + c (this type of utility
function is termed quasi linear). The sum, over all agents, of the monetary payments is
always 0, and, as a result, if the agents turn out to be using strategies that maximize u1 +u2
then they will also be economically efficient.

Now we can define the notion of a Pareto-ELE. A Pareto-ELE is similar to a Nash-ELE,
but its aim is that the agents’ behavior will be economically efficient. Therefore, the two
distinctive aspects of Pareto-ELE are:

1. We require that the agents will be able to get close to an efficient outcome.
2. We allow side payments as part of the agents’ behavior.

Suppose that we are considering games with k actions. For every repeated game M , let
(P1(G),P2(G)) be an economically efficient joint action of the (one-shot) game associated
with M , and denote by PV i (M) the payoff obtained by agent i in that joint action. A policy
profile (π,ρ), which also allows side payments, is a Pareto efficient learning equilibrium
if for every ε > 0,0 < δ < 1, we have that there exists a T > 0, polynomial in 1/ε, 1/δ,
and k, such that for every t � T and game matrix G (defined over the actions in A),
with corresponding RG, M , U1(M,π,ρ, t)+U2(M,π,ρ, t) � PV1(G)+ PV2(G)− ε for
i = 1,2, and if player 1 deviates from π to π ′ in iteration l, then U1(M,π ′, ρ, l + t) �
U1(M,π,ρ, l + t)+ ε with a probability of failure of at most δ. And similarly for player 2.

Theorem 4. There exists a Pareto-ELE for any perfect monitoring setting.

Proof (Sketch). Consider the following algorithm that defines the policies and side
payments for the agents.

Player 1 performs k iterations of the action ai , for i = 1,2, . . . , k. In parallel to that, player
2 performs the sequence of actions (a1, . . . , ak) k times.

Now, that the game is known to both agents, they compute the probabilistic maximin
values for agent 1 and agent 2. Denote the probabilistic maximin value of agent i

by vi and the payoff it gets in the economically efficient solution by ei . Without loss
of generality, e1 − v1 > e2 − v2. Choose r such that r = e1 + e2 − (v1 + v2). If player
2 is paid r/2 by player 1 when the efficient solution is played then each player’s total
payoff is at least as high as his probabilistic maximin. This is easy to see by examining
the two cases: e2 − v2 > 0 and e2 − v2 � 0.

From now on the agents adopt the efficient behavior with the above side-payments in
all following iterations. If several economically efficient behaviors exist, some pre-
determined selection algorithm is used.

In case one of players (the adversary) deviates, either in the exploration stage or the
following state, the other player (the agent) will punish it as in the case of Nash-ELE.

4 This is the definition in the perfect monitoring case. The definition in the imperfect monitoring case is
similar.
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It will play as if its payoffs in the game are the complements to Rmax of the adversary

payoffs.

The proof now follows the steps of the proof for the existence of ELE. �
For the case of imperfect monitoring, the same result with respect to Nash-ELE hold

here.

Theorem 5. A Pareto-ELE does not always exist in an imperfect monitoring setting.

7. Stochastic games

Stochastic games provide a more general model of repeated multi-agent interactions.
In a stochastic game the players may be in one of finitely many states, S = {s1, . . . , sm},
where each state is associated with a game in strategic form. The joint action at each state
not only determines the payoffs but also determine (stochastically) the identity of the next
state the agents will reach. Formally, let A = {a1, . . . , ak} be the set of actions available to
the agents. For each state si , the game associated with si associates a payoff pi

j (a, b) with
agent j when the joint action is (a, b). In addition, for every si ∈ S the probability that the
next state will be sj when the joint action is (a, b) is denoted by P(si , sj , a, b).

Now that we have multiple games, a policy πi for agent i associates a (possibly mixed)
action with every state and, potentially, a payment to the other agent. This policy is a
function of the history of states the agent visited and the payoffs it observed. Throughout
this section we assume the perfect monitoring setting, since our impossibility result for
imperfect monitoring in repeated games immediately rules out the existence of an ELE in
the more general context of stochastic games.

Stochastic games provide a more realistic setting, that is also more challenging
technically. First, let us try and understand the issues involved. The first obstacle we
face is the lack of general results on the existence of Nash equilibrium in average-reward
stochastic games. Thus, we restrict our attention to the case of Pareto-ELE.

Conceptually, the required generalization is straightforward—the learning algorithm
should quickly lead to an economically efficient policy for both agents, i.e., a policy that
maximizes the average sum of rewards, and deviations should quickly lead to a lower
reward. However, while in the case of repeated games we equated “quick” with polynomial
in the size of the game and the approximation parameters ε and δ, the situation in stochastic
games is more complicated. A parameter that is typically used to assess the speed of
convergence of a learning algorithm in stochastic games is the ε-return mixing time [4,19].
Intuitively, the ε-return mixing time of a policy is the expected time it would take an agent
that uses this policy to converge to a value that is ε close to the value of the policy. Ideally,
we would like a learning algorithm to attain the optimal value in time polynomial in the
ε-return mixing time of the optimal policy.

Formally, assume some fixed stochastic game M , and let (π1,π2) be a policy profile
in M . We denote the T -step average reward of this policy profile for agent i starting at state
s0 by Ui(s0,π1,π2, T ), and we define Ui(s0,π1,π2) = lim infT →∞ Ui(s0,π1,π2, T ). We
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let U denote U1 + U2. The ε-return mixing time of (π1,π2) is the minimal T such that for

all t > T and all states s, we have that U(s,π1,π2, t) > U(s,π1,π2) − ε. Thus, after the
policy profile (π1,π2) is executed for T steps or longer, the agents’ expected average sum
of rewards will be very close to their long-term average sum of rewards. Let (π,ρ) be a
policy profile that maximizes mins U(s, ·, ·), and let Tmix be its ε-return mixing time.

The definition of Pareto efficient learning equilibrium in stochastic games is identical to
that of repeated games, except that T must be polynomial in Tmix as well. Note that if the
game is irreducible (i.e., for any fixed policy profile, the induced Markov chain is ergodic),
U(s,π,ρ) does not depend on s. We can show the following:

Theorem 6. Under the following assumptions a Pareto-ELE in stochastic games exists: (1)
The agents have perfect monitoring; (2) Tmix is known.

Proof. The intuitive idea behind the algorithm is identical to the case of repeated games
and so we elaborate only on the new issues. First, the agents run an algorithm for finding a
policy profile π,ρ that maximize U(·, ·). Next, they run an algorithm for finding the best
that each can accomplish on its own (i.e., assuming the other agent is trying to minimize
their average payoff). From that point on they run the policy profile π , ρ, adjusted with
appropriate side payments so that each agent receives more than the best it can accomplish
on its own, much like in the case of repeated games. At any point, if an agent deviates, the
other agent plays as if its goal is to minimize the other agent’s average reward.

The learning algorithm we just described is (ε-)Pareto-optimal: The long-term average
sum of rewards of this algorithm is ε-close to the optimal average sum of rewards, as
desired. No agent has an incentive to deviate at any stage because the side-payment
structure guarantees that it attain at least the value it could attain on its own.

To show that this algorithm is a Pareto-ELE, we also need to show that the value can
be attained efficiently and punishment can be performed efficiently. We do so by resorting
to recent results on efficient learning in fixed-sum stochastic games and common-interest
stochastic games. First, to compute the policies π,ρ that maximizes U(·, ·) we use the
algorithm described in [5]. We refer the reader there for more details. What we need
to note here is that this algorithm learns the required policy profile in polynomial time.
Next, to compute the values each agent can attain on its own we use R-max [4]. R-max is
appropriate here because we are learning in a fixed-sum game. We this first for the fixed
sum game in which the rewards are based on agent 1’s rewards, and then with respect to
the fixed-sum game in which the rewards are based on agent 2’s rewards.

We note that given some value T ′ as input, R-max will learn a T ′-step policy in time
polynomial in T ′ and the other game parameters. This policy will be optimal among all
policies that mix in time T ′. We shall take T ′ = Tmix. The average reward of this policy
will be used to compute the side payments structure as in the case of repeated games. In
any case, the average reward of the policy profile π , ρ (suitably modified to include the
side payments) will be no lower than the value that each agent can receive on its own.
Thus, should an agent deviate from the above, we know that within Tmix steps it will attain
a lower average reward, i.e., punishment can be carried out efficiently. �
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Finally, note that there is a standard, though imperfect, technique for removing

knowledge of Tmix in which we simply guess progressively higher values for Tmix. We
refer the reader to [4] for the implications of this approach.

8. Discussion

Most previous work on learning in games fits into one of the following two paradigms:

(1) The study of learning rules that will lead to a Nash equilibrium (or other solution
concept) of a game [11].

(2) The study of learning rules that will predict human behavior in non-cooperative
interactions, such as the ones modeled in repeated games [7].

While the approach taken in (2) has significant merit for descriptive purposes, a normative
approach to learning should go beyond recommending behavior that will eventually lead
to some desired solution. The major issues one needs to face are:

(1) The learning algorithms of the agents should be individually rational.
(2) The learning algorithms should efficiently converge to the desired values if employed

by the agents.
(3) A deviation from the desired learning algorithm should become irrational after a short

period of time.

The concepts introduced in this paper address these issues. Both ELE and Pareto-ELE
provide new basic tools for learning in non-cooperative settings. Moreover, we have been
able to show constructive existence results for both ELE and Pareto-ELE in the context
of repeated games with perfect monitoring. We were also able to show that if we relax
the perfect monitoring assumption, the desired properties are impossible to obtain in the
general case. Pareto-ELE is an appealing concept in the context of stochastic games as well,
and we were able to extend our results to that context. Together, our concepts and results
provide a rigorous normative approach to learning in general non-cooperative interactions.

8.1. Related work

It is useful to contrast our approach with an important line of related work that features
algorithms that guarantee for the agent using them a value which is approximately equal
to the value he would have attained had he known in advance how his adversary would
play. Algorithms along this line appear in, e.g., [15] and in [10] (where special attention is
given to the issue of efficiency). This latter result is truly in the spirit of online algorithms,
where our goal is to do as much as we can online as we would have been able to do
off-line. In this case, we attempt to react online to an adversary’s behavior in a manner
that would be similar—in terms of our average payoff—to the best we could have done
had we known the adversary’s behavior before hand. These results are highly valuable,
but many readers may not notice a subtle, but crucial point about them: They treat the
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adversary’s policy as a fixed sequence of mixed strategies (probabilistic actions), and that

is contrary to the spirit of game-theory. In reality, the adversary can adjust its policy in
response to the agent’s behavior. Imagine, for example, the following instance of the well-
known Prisoner’s Dilemma game:

M1 =
(

2, 2 −10, 10
10, −10 −5, −5

)
.

Consider the following two adversary policies: (1) If the agent initially plays row 1
(denoted cooperate) the adversary will always play column 1 (denoted cooperate, too).
If the agent initially plays row 2 (denoted defect) the adversary will always play column
2 (denoted defect, too). (2) If the agent initially plays cooperate the adversary will
always play defect. If the agent initially plays defect the adversary will always play
cooperate. It is clear that no agent can guarantee a best-response value against such
an adversary, and this approach is limited to a view of the adversary as using a (pre-
determined) sequence of mixed strategies.5 The bottom line is that, despite their practical
and theoretical importance, these results, in essence, take more of a single-agent decision
problem perspective, and they cannot replace concepts that are based on the notion of an
equilibrium.

Another related work on normative guidelines to the design of learning algorithms is [2].
There, Bowling and Veloso suggest two criteria for learning algorithms. The first, which
they call rationality stipulates that if the other player’s policies converge to a stationary
policy then the learning algorithm will converge to the best-response policy. The second,
which they call convergence stipulates that the learner will necessarily converge to a
stationary policy. Both criteria are attractive, but as with the above work, the notion of
a Nash equilibrium of learning strategies is a deeper notion of rationality than that of
best-response upon convergence. And convergence, though definitely desirable, ignores the
issue of convergence rate. Moreover, convergence, as specified, is not well defined. Indeed,
in their work, Bowling and Veloso consider the special (well-defined) case of convergence
in self-play, i.e., when all agents use the same algorithm. This is the standard notion of
convergence adopted by most work on learning in games uses. In fact, in the particular
context of self-play investigated by Bowling and Veloso, their requirements are equivalent
to the requirement that the algorithm will converge to a correlated equilibrium—a common
property pursued by learning algorithms in the game-theory literature. The concept of ELE
provides a more rigorous notion of individually rational learning strategies. Moreover, we
believe that efficient (i.e., polynomial time) convergence rate should be an integral part of
the definition of rationality. In many settings, what happens after an exponential number of
iterations is not of great interest. This applies to the judgment of irrationality as well. An
agent that makes an “irrational” choice that leads to increased reward in the near future and
decreased reward only after an exponential number of steps does not seem too irrational.

5 A strategy of always playing defect would be the best response for every particular sequence of actions
taken by an adversary from one of the two classes of adversaries described above. But such an approach would
completely ignore the fact that the agent’s first action influences the whole future of adversary steps. It is easy to
construct more complicated examples of how the agent’s actions influence the adversary’s choices.
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When considering previous work on learning algorithms more generally, a natural

question that arises is whether they are an ELE. This is not likely to be easy to answer—
so far there are no polynomial-time convergence results for existing algorithm other than
R-max [4]. But even if it is not possible to prove that they converge in polynomial time, it
is interesting to check whether a learning agent can improve his average payoff if he knows
that his adversary is using a particular learning algorithm. Such stability results of existing
algorithms are highly desirable.

8.2. Perfect monitoring

Our results indicate that ELE is possible when agents have perfect monitoring, while
there are various classes of games with imperfect monitoring in which ELE cannot be
achieved. This limits the applicability of the ELE criteria as it cannot be used as a guideline
in such cases. Yet, most previous work in AI on learning algorithms for games assumes
perfect monitoring, including [14,17,21]. Work on common-interest or zero-sum games
makes this assumption implicitly too, since there the perfect and imperfect monitoring
settings coincide.

Perfect monitoring is not assumed by authors that attempt to devise competitive
strategies, such as [10]. The differences between our setting and their setting was discussed
above. Much of the earlier work on learning in games is mostly not algorithmic, and does
not attempt to devise efficient algorithms. This includes work on replicator dynamics [11],
which assumes the existence of (external) dynamics where agents who have obtained
higher rewards “survive”. In fact, one way to interpret this is as a perfect monitoring
assumption whereby agents tend to mimic agents in, e.g., a symmetric game, who received
higher payoffs in the past using particular actions. Notice also that in some of the game
theory literature the agent is assumed to know his utility function to start with and the
learning process is used to explain how actions are selected.

Despite the frequent use of the perfect monitoring assumption in the literature, the
cautious reader may worry about the applicability of this assumption in practice. To see
the wide applicability of that setting, consider the following scenario. Consider a set of
possible games, each of which refers to different assignment to some initially unknown
feature of the environment (e.g., how efficient is a particular resource). When agents
select their actions while playing the game, this initially unknown feature is revealed (e.g.,
when agents choose their actions they learn about the speed of the appropriate resource
as a result of the payoffs obtained by the different agents). Such settings fit the perfect
monitoring assumption and they are typical in various economic settings. For example,
work in economics refers to the setting of private values, where each agent has its own
worth for a good, observed only by it, and the setting of common values, where the worth
of the good is common but is revealed to the agents only after they take their actions. Many
interesting intermediate cases exists (see [20] for a discussion and survey in the context
of auction theory). These settings fall into the category of games in which private payoffs
are revealed after the joint-action of all agents and are instances of games with perfect
monitoring.
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Finally, we note that the fact that ELE does not exist for certain (large) classes of games

with imperfect monitoring, does not imply that an ELE does not exist for more restrictive
classes, as we demonstrated in the case of common-interest games.

8.3. Multi-player games

Our formulation of ELE clearly extends to multi-player games. However, it is not
apparent whether the positive results extend as well. First, observe that the technique of
obtaining the probabilistic maximin value when the game is initially unknown, introduced
in [4], naturally extends to the case of many players. In this paper we use this idea in
order to punish a deviator. As a consequence, our result immediately applies if there is
some form of communication among the players, i.e., the agents can act as one entity
whose aim is to punish the deviator. In the case of perfect monitoring, deviations will be
detected simultaneously by the agents and therefore they can move to the corresponding
punishment mode, where all of the agents (excluding the deviator) will treat themselves as
one agent with payoffs complementary to those of the deviators. Without a communication
mechanism, one can obtain similar results if we consider deterministic punishments
only. This restricts the class of games where we can prove that ELE exists to ones
where deterministic punishment makes the payoff lower than the one obtained in the
Nash equilibrium. Otherwise, the techniques used here are not applicable, and alternative
approaches should be sought.

The main drawback of applying our approach in the multi-player setting is that although
computations remain polynomial in the size of the explicit representation of the game,
this size grows exponentially with the number of players. The discussion of ELE in the
framework of succinct representation of games is beyond the scope of this paper.

8.4. ELE and ex-post equilibrium in games with incomplete information

Some of the insights behind ELE relate to work in economic mechanism design. The
recent CS literature deals extensively with connections between distributed systems and
the design of economic mechanisms. One central issue in that literature is the selection
of a solution criterion: what can we assume about the agents’ rational behavior? Of
particular interest is the case where agents can communicate with one another. One
must carefully consider the particular assumptions made in this setting with respect to
whether or not the agents adopt strategic considerations when taking actions and passing
messages (e.g., can agents strategically modify messages sent by others?; see [8,23,27] for
various ways of approaching these issues). Much of the literature deals with the search for
mechanisms where the agents will have dominant strategies that lead to desired behavior
(e.g., maximizing social efficiency, or elicitation of agents’ preferences). However, it can be
shown that such mechanisms rarely exist. One alternative is to consider games/mechanisms
where there exists an ex-post equilibrium: a strategy profile of the agents in which it is
irrational to deviate from each agent’s strategy, assuming the other agents stick to their
strategies, and regardless of the state of the system. This system state may not be initially
observable and might consist of various private inputs of the agents. Ex-post equilibria
play a major role in central mechanisms (see [16] for general results in the context of the
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famous VCG mechanisms). It turns out that the idea of equilibrium of learning algorithms

can be viewed similarly. We search for strategies (termed learning algorithms) such that
it will be irrational for each agent to deviate from its strategy assuming the other agent
sticks to its strategy, and regardless of the state of the system (which in our setting is the
initially unknown game). We believe that our results contribute to the literature on ex-post
equilibria in games with incomplete information, by providing a general generic setting
where they play a major role and do exist.

8.5. Correlation devices

Although our definitions are all in the spirit of equilibrium theory, in some cases (and
in particular in the case of side payments in Pareto-ELE) it will be nice to motivate the
source of algorithms (e.g., the designed payments scheme). One possible approach is
to consider a correlation/mediator who provides the agents with algorithms to use and
suggested payments to be made. This correlation device is not a designer who can enforce
behaviors or payments, and it does not possess any private knowledge or aim to optimize
private payoffs. Therefore, the right way to view this party is as a mediator/interested party
or correlation device (as in [1,9], etc.) We find this interpretation to be convenient, although
not essential. Notice that the suggested payments are just part of the algorithms, and it is
up to the agents to decide whether to make them; it is the proof that the algorithms are
in equilibrium that suggests that these payments will be actually executed by individually
rational agents.

8.6. Cooperation and threats

One of the major issues in non zero-sum repeated games is cooperation and threat.
This is manifested by the famous prisoners dilemma and similar situations. These issues
are naturally handled in our framework under the umbrella of Pareto-ELE. In situations
like the prisoners dilemma, one may be interested in the emergence of economically
efficient outcome as an equilibrium of rational strategies. Indeed, the folk theorem in
economics employed by our work is the formal justification for such behavior. For
example, procedures such as Tit-For-Tat or GRIM are strategies that are in equilibrium
in the repeated prisoners dilemma and yield cooperation in that setting. In a sense, Tit-For-
Tat has an inherent mechanism for punishing the other player if he does not cooperate.
Our results in the context of Pareto-ELE will therefore lead to, e.g., cooperation in
the repeated prisoners’ dilemma. Notice that in the framework of a classical prisoners
dilemma, presented as a symmetric game, no side payments will be needed (since the
benefits from cooperation will be identical for both agents). More generally we get that
issues regarding threats and cooperation are inherited from the folk theorems, and therefore
are an integral part of our approach.

Our approach, however, deals with a more general case in which the game played might
be initially unknown, e.g., the game played might be the prisoners dilemma but might
be also be another game. In order to therefore have credible threats one should add an
efficient algorithm that “punishes” effectively and efficiently also when the game is not
known. Such a procedure is provided in this paper. As a result we are able not just to
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tolerate cooperation and threats, but to do so for a class of games where the identity of the

game is initially unknown, as captured by the Pareto-ELE setting.

Appendix A. ELE existence proof

Claim 1. The ELE algorithm, when adopted by both players, is indeed an ELE.

Proof. We refer to the algorithm used by the agent when playing against the adversary
in order to guarantee that the adversary will not obtain more than its maximin value as
the repeated-R-max algorithm, as it is a version of the R-max algorithm [4]. The proof
that the repeated-R-max leads to near-optimal value takes the following steps. The game
matrix for G contains k2 entries. Therefore, the number of iterations in which the agent
learns some new information (i.e., has to update its model) is at most k2. This means
that the agent needs to compute its strategy at most k2 + 1 times. Each computation of
the probabilistic maximin strategy requires polynomial time and can be carried out using
linear programming. As we shall show, except for this small number of phases in which
the agent learns new information, its expected payoff is at least as high as the value of the
probabilistic maximin strategy. Thus, overall, its average payoff will be high.

The actual number of iterations in which the agent learns new information may be much
smaller than k2, and it depends on how the adversary plays. The adversary can attempt to
prevent the agent from learning about various aspects of the game. However, whenever it
does this, the agent is guaranteed to obtain a good payoff. More precisely, in any iteration
in which the agent did not learn new information, its expected payoff must be no less than
the payoff of the probabilistic maximin strategy according to its model, which is at least as
high as the probabilistic maximin value of the real game.

Of course, the discussion above deals with expected values. If we wish to guarantee an
actual value with probability of at least 1 − δ, we proceed as follows:

Lemma A.1. Assume that the expected payoff of strategy s is µ. Then, the probability
that our average payoff along z iterations will be less than µ − Rmax/z

1/3 is bounded
by e−z1/3/2.

Proof. Let Xi be the payoff in iteration i , and let Yi = (µ−Xi)/Rmax. Notice that |Yi | � 1,
and that E(Yi) = 0. Hence, Chernoff bound implies that Prob(

∑z
j=1 Yj > z2/3) < e−z1/3/2.

This implies that the average return along z iterations is at most Rmax/z
1/3 lower than µ

with probability of at least 1 − e−z1/3/2. �
In what follows, we choose z so that: Rmax/z

1/3 < ε/(2Rmaxk
2) and k2e−z1/3/2 < θ .

This holds for z = max(8R6
maxk

6/ε3,8 ln3(k2/θ)) + 1. Note that z is polynomial in k, 1/ε,
1/θ , and Rmax. The precise value of θ will be determined later, and it will be polynomial
in k, 1/ε, 1/δ and Rmax, as required. Assume that the adversary uses some fixed, arbitrary
strategy σ , and let us use m to denote the value of the probabilistic maximin strategy for
the agent. Our next step is to show the following:
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Lemma A.2. Let G′ be the agent’s current model of the game and let G be the real game.

Let ρ be the probabilistic maximin policy with respect to G′. If the agent plays ρ for z

iterations then with probability of at least 1 − θ the agent will either receive a payoff of at
least m − ε/Rmax, or it will learn the value of a new entry.

Proof. Let r denote the agent’s actual average payoff in z iterations of ρ and σ . If
r � m − ε/Rmax, we are done. Therefore, let us assume that r < m − ε/Rmax. We shall
show that with probability of at least 1 − θ the agent will learn a new entry in the game
matrix. Let mG′ denote the probabilistic maximin value of the game G′. By definition, mG′
is also a lower bound on the expected payoff of ρ against σ in G′. Let m̄ be the expected
value of ρ with respect to G and σ . We know that |r − m̄| � ε/(2Rmax) with probability
of at least 1 − θ . Since we assume r < m − ε/Rmax, it follows that m̄ < m − ε/(2Rmax).
However, in G′ the payoffs are at least as high as the corresponding values in G. This means
that mG′ > m. Define a new game W = G′ − G, i.e., the payoff in W is the difference
between the corresponding payoffs in G and G′. By definition, W is non-negative. It is
strictly positive exactly in the entries that are marked unknown. The expected value of W

given ρ and σ is exactly the difference between the expected value of ρ and σ on G′ and
on G. We know that the expected value of ρ and σ in G′ is at least mG′ > m. The expected
value of ρ and σ in G is m̄. Therefore, E(W) > ε/(2Rmax). Using standard Chernoff
bound analysis (e.g., as in Lemma A.1, above), it follows that after z iteration, it follows
that the actual average value of W is positive with probability of at least 1 − θ . This can
happen only if an unknown entry is played. �

To finish the proof, showing that the agent can punish efficiently a deviator, we choose
Z = zk2 and let T = Z + Q, where T ε/2 � ZRmax + Qε/(2Rmax). This is satisfied if
Q > Z2Rmax/ε. Since Z is polynomial in k, 1/ε, 1/θ , and Rmax, we have that Q and T

are polynomial in k, 1/ε, 1/θ , and Rmax. Finally, we define θ = δ/T .
We claim that with probability of at least 1 − δ, for any t > T , the average payoff

obtained by the agent cannot be lower than the probabilistic maximin value of the game
by more than ε. We know that with probability of at least 1 − T θ = 1 − δ, in at least Q

iterations, the average payoff will be at least m − ε/(2Rmax) and in at most Z iteration
the average value of the game W will be positive (i.e., learning will occur). We know that
the average payoff in these Z remaining iterations is between 0 and Rmax. Therefore, by
definition of T , the overall average value will be as desired. Finally, we note that the agent
need not be aware of any of z, Z, Rmax or Q, and it simply plays according to the algorithm
above.

To conclude the existence proof, we notice that there are only k2 iterations where the
agents explore the unknown game matrix. If a player deviates from the exploration stage,
then Lemma A.2 guarantees that this deviation will be irrational (up to an ε factor, with the
desired probability of success). If the agents do follow the exploration stage then deviation
from selecting the appropriate strategy (determined by a Nash equilibrium) is irrational by
the definition of the Nash equilibrium. �
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