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1. Introduction 

In multi-agent systems, be they human societies or distributed computing systems, 
different agents (people in the one case, programs or processes in the other) aim to 
achieve different goals, and yet these agents must interact either directly by sharing 
information and services, or indirectly by sharing system resources. In such distributed 
systems it is crucial that the agents agree on certain rules, in order to decrease conflicts 

among them and promote cooperative behavior. Without such rules even the simplest 
goals might become unattainable by any of the agents, or at least not efficiently attainable 
(just imagine driving in the absence of traflic rules). These rules strike a balance between 
allowing agents sufficient freedom to achieve their goals, and restricting them so that 
they do not interfere too much with one another. 

We have been investigating social rules as a design tool. Some of these rules are 

designed and agreed upon ahead of time (traffic laws are an example) ; in previous work 
[21,25] we investigated some aspects of this off-line design of social laws. However, 

not all rules can be agreed upon in advance. This is either because the characteristics of 
the society are unknown, or because they change over time. In addition, the design of all 
rules in advance might be computationally hard. In such cases, it is often important that 
the society converge on a convention in a dynamic fashion. In human societies this is 

common; this is how (e.g., software) standards emerge long before they are enshrined 
in official regulations. 

How do such conventions emerge? Roughly speaking, the process we aim to study is 
one in which individual agents occasionally interact with one another, and as a result 

gain some new information. Based on its personal accumulated information, each agent 
updates its behavior over time. The complexity of this process derives from its concurrent 

nature: As one agent adapts to the behavior of the agents it has encountered, these 
agents update their behavior in a similar fashion. This tends to result in complex system 
dynamics, reminiscent of those encountered in particle physics, population genetics, and 
other areas. Each of these areas has developed stylized settings in which to carry out 
the investigations; we ourselves will adopt the framework of stochastic games from the 

economics literature. 
In general terms, we will be asking two types of question: 
( 1) Under what conditions do conventions eventually emerge? and 
(2) How efficiently are these conventions achieved? 
As it turns out, our results on eventual convergence will be primarily analytic, whereas 

the results on efficiency include both analytic lower bounds and empirical results of 

extensive computer simulations. 
Here is the structure of our article, explained at two levels of granularity: a brief, 

jargon-free description, followed by a more detailed description that appeals to game- 
theoretic terminology. 

The brief description of the article is as follows: 
l We give a formal definition of social laws and conventions, which are essentially 

the restriction of choices available to agents. 
l We identify those laws and conventions that might be deemed rational from an 

individual standpoint. 
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l We dlefine a stochastic setting in which agents interact with one another and update 
their behavior as a result. We define a particular update rule, and show that in 
certain circumstances it is guaranteed to lead all agents to accept a rational social 
convention. 

l We then investigate how fast such rational conventions might emerge. We first give 
an analytic lower bound, and then investigate the actual rate of convergence in a 
particular case through extensive computer simulations. 

Here is a more detailed overview of the article, which makes reference to game- 
theoretic terms. The reader unfamiliar with game theory should just skim the following, 
and perhaps refer back to it once all the terms have been defined in subsequent sec- 

tions. 

l We adopt without change the notions of games, payofs matrices, and rationality 
as utility maximization. We also make reference to the notions of maximin values, 

Nash equilibria, and Pareto optimal@. We make no novel contribution in this part. 

l Next we consider the possibility of limiting the agents to a subset of the original 
strategies of a given game, thus inducing a sub-game of the original one. We call 
such a restriction a social constraint; if the restriction leaves only one strategy to 
each agent, it is called a (social) convention. Some social constraints are consistent 
with the principle of individual rationality, in the sense that it is rational for agents 
to accept those (assuming all others do as well). In fact, we identify several senses 
of “rational social behavior”. Some constraints are not rational in any reasonable 
sense. Both rational and irrational types of constraints may be of interest from 
a design standpoint, but we will pay special attention to the former. As social 

constraints fall within the general area of cooperative games in economics, whatever 
contribution we make in this part takes the form of added concreteness, a somewhat 

new Iperspective, and the attendant new terminology. 
l Classical results in game theory make strong assumptions; in particular, they rely 

on the game being common knowledge. Much recent work in economics is devoted 
to investigating more realistic models. One important strand of recent work in 
economics, which has been strongly inspired by models of population genetics 
(e.g., [ 9,12]), tends to relax not only the assumption that the game is common 
knowledge, but sometimes even that the game is known at all. Specifically, a 

number of models have been proposed in which agents engage in some process 
of (typically pairwise) interactions through which they gain information about 

the system (specifically, about how well each of their strategies has fared so far, 

perhaps about the strategies used by other agents, and, if the game is not known in 

advance, about the game). The agents may then use that information to update their 
choice of strategy, and the process repeats. It is then sometimes possible to show 
that the system will converge to a particular global state as if the players in fact 
had complete information and were acting rationally. The models within economics 
vary widely on how agents accumulate information, and how they update their 
choice of strategy. One important model is that of stochastic games and the notion 
of evolutionary stable strategies (ess’s), where it is shown that under certain 
conditions the iterated process will converge to a Nash equilibrium. We make no 
novel contribution to this work as such. 
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The items below constitute the core of our article, and are all novel. 
l We ask, in an analogous fashion, how desirable social conventions might emerge 

through a stochastic process. These social conventions are not necessarily Nash- 
Equilibria.2 We adopt the framework of stochastic games mentioned above. How- 

ever, that framework allows quite a few variants, and our particular setting has 
unique features (we will explain and motivate these features later). Most impor- 
tantly, we define a simple and natural strategy-selection rule called highest cumu- 

lative reward (HCR). (Again, for the reader familiar with ess’s, we remark that 
this rule replaces the best response rule.) 

l We show a class of stochastic games in which the HCR rule is guaranteed to 
converge to a rational social convention. 

l We then ask how fast such social conventions might be achieved; most of our 
article is in fact devoted to this last topic. We first give an analytic lower bound 
on how fast it can be expected to be reached given any strategy-selection rule 
(we use a coupon-collector-style argument). We then investigate how fast such 
conventions evolve in practice. We do so by picking the simple coordination game, 

as defined by Lewis,3 and through extensive computer simulations determine not 
only the effect of applying HCR, but also the subtle effects of various systems 
parameters, such as the amount of memory and frequency of update performed by 

all agents. 

2. Games, social laws, and conventions 

In this section we lay out the static framework, starting with the standard game- 
theoretic notions, and overlaying those with the notions of social laws and conventions. 

2.1. Games 

All definitions in this section are standard and, in fact, very basic, in game theory. 
We include this section to make the article self-contained for those not familiar with 
game theory, and also to be clear about just how much we are taking from game 

theory (although we will take a bit more when we get to stochastic games). We start 
by defining the standard notion of a (one-shot) game. Intuitively, a game involves a 
number of players, each of which has available to it a number of possible strategies. 4 
Depending on the strategies selected by each agent, they each receive a certain payoff. 5 
The payoffs of the different agents are in general independent of one another, and are 
captured in a payoff matrix. Formally: 

2 Although in some cases they may be. Our study will differ from the related studies in economics on various 

other dimensions as well. 

s In fact we choose the perhaps most simple coordination game. 
4 Some ‘work in AI uses the term ‘action’ rather than the term “strategy”; we will use both terms 

interchangeably. 
5 Some work in AI uses the term “reward” instead; again, we will use both terms. 
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Definiti~rl 1 (k-person game). A k-person game is defined by a k-dimensional matrix 
M, the entries of which are each a k-long vector of real numbers. 

Intuitively, each dimension of the matrix represents the possible actions of the k 
players o-f the game. The jth element of the vector M(tl, i2,. . . , ik) represents the 

feedback to the jth player if the actions taken by all the players are il, s’p, . . . , ik, 
respectively. 

In this article we will be concerned exclusively with symmetric games. Intuitively, in 

symmetric games all players have the same strategies available, and the feedback they 
get does not depend on their roles or identities. More precisely: 

Definition 2 (Symmetric game). A payoff matrix M defines a symmetric game iff the 
following hold: 

( 1) All dimensions of M are of equal length, 1. (Intuitively: The agents all have the 
same strategies availably.) 

(2) For all il,. ..,ik(i<iij<&wherel<j<k)andl<m,n<k,if&=i,then 

the mth and nth elements of the vector M( il,. . . , ik) are identical. (Intuitively: 
Two players who play identically get the same payoff.) 

(3) If (it,iz,. . . , ik) is a permutation of (jt , jz, . . . , jk) then the vectors f%f( 6, i2, 
,ik) and M(.h,jz,. .- , jk) are the co~~ponding pe~utations of one another. 

&uitively: The payoff to the players does not depend on their roles in the 

game.) 

IR addition to the res~iction to sy~etric games, throughout most of the paper we 
will concentrate on 2-person-2-choice games (i.e., M wiil be a 2 x 2 matrix with k = 2). 

In the remainder of the article, and unless specified otherwise, a game will be understood 
to be a symmetric 2-person-2-choice game, and thus will have a matrix of the following 
form: 

Here are two examples of games. These two games, which are well known in the 
literature, capture the phenomena of coordination and cooperation, respectively. Intu- 
itively, the: first game describes a situation in which the goal is to reach homogeneity in 

the society; it is an instance of the class of coordination games as defined by Lewis in 
his study of conventions [ 181. 

The second game we will consider is an instance of the well known prisoners dilem~ 
setting, of the sort studied, for example, by Axelrod [Z] . This game is a basic game in 
the study of cooperation. 
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Example 4 (A co~perutio~ game, also snows as prisoners’ di~ern~ 6 ) . 

( 

131 -3,3 

3, -3 -2,-2 > 

(In the cooperation game we call the first strategy available to each player “cooperate” 
(or “c” for short), and the second ‘defect” (or “d”) .) 

The general question asked is, given a game, what strategies might the various players 

select. The combination of strategies selected by all the agents is called their joint 

strategy (or joint action)+ A basic assumption of game theory, which underlies many 
of its famous theorems, is that individuals are rational in the sense of being utility 
maximizers; that is, they will pick strategies that guarantee them the highest payoff. A 
number of important notions arise as a result; here are three. 

(1) 

(2) 

(3) 

If an agent knows what game is being played, but cannot assume that the other 

players do (or ~t~rnatively that they are rational), he might consider taking 
those actions that guarantee him the highest minimal payoff, no matter what the 
other agents do. The amount of this payoff is called maximin value. An action 

that guarantees the maximin value is called a maximin strategy. 
If the game the agents play is common-knowledge then the maximin strategy may 
not be the best choice; the worst-case scenario for a given agent might be also 

a non-optimal case for the other agent(s), and therefore can be assumed not to 
arise. A more appropriate notion in such setting is that of a Nash equilibrium; this 
is any joint strategy that is stable in the sense that no single agent benefits from 

switching to another strategy if all others remain unchanged. Nash equilibrium 
is among the most ~~fluenti~ notions in game theory. 
Another influential notion is that of Pareto optima&y. A joint action is Pareto 

optimal if there does not exist another joint action that increases the payoff to 
one agent without decreasing the payoff to another. 

Example 3 (continged). In the coordination game the maximin value obtained is -1; 
both strategies are maximin strategies. There are two Nash equilibria, namely the two 
joint strategies on the main diagonal, and in both the payoff to each player is 1. These 
Nash equilibria happen to also be the two Pareto-optimal joint strategies in the game. 

Example 4 (continued). In the cooperation game the (unique) maximin strategy is 
“defect”, with a maximin value of -2; this is also the strategy that will be performed 
in the (unique) Nash equilibrium. Nevertheless, this Nash equilibrium is the only joint 

strategy that is not Pareto optimal. 

2.2, Social laws and conventions 

Notions such as Nash equilibria make sense in a competitive setting that is devoid of 
any central control. In such a setting one can reasonably argue, for example, that in the 

hThe reason we prefer the term “cooperation game” to “prisoners’ dilemma” is that in cooperative, or 
bargaining, situations, which are the sort that we will consider, there is no dilemma associated with the game. 
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cooperation game it is irrational for an agent to do anything but defect (and hence the 
paradox, since the agents are better off if they both cooperate). 

However, consider a setting in which there does exist some central authority, be it a 
government in a human society or a system administrator in an electronic society. In 

this case, the authority may step in and dictate constraints. In general, it may dictate 
any constraint at all, in a way that is independent of the individual payoffs. This is an 
interesting possibility from a design standpoint, since there may be design goals that 
are not reflected in the individual payoffs. Indeed, our own primary motivation lies in 

using social laws as a tool for designing effective distributed systems. Nevertheless, 
in this article we will concentrate on constraints that serve the goals of the individual 

agents. Splecifically, we consider the following scenario. Each agent is presented with the 
opportuni-ty to accept constraints on his actions, conditional on all other agents accepting 
similar constraints. The constraints will be imposed if and only if all agents accept them, 
and in that case compliance with the constraints is guaranteed by the central authority. 
The question is what sort of social constraints are rational for the agent to accept under 
these conditions. 

Definition 5 (Social law). A social law is a restriction on the set of actions available 
to the agents. A game g and a social law sl induce a sub-game gsl of g that is the 
restriction of g to actions that are not prohibited by sl. 

We may now define criteria according to which a social law may or may not be 
deemed r,ational. The tool we have at our disposal consists of the various variables 
defined on games, such as the three already mentioned-the maximin value, the set 
of values of the various Nash equilibria, and the set of values of the Pareto-optimal 
strategies. For any such variable V, let V(g) denote the value of that variable in the 
game g. 7 At this point in the article we remain agnostic about the choice of game 
variables; we will be less vague about it when we discuss the evolution of social 
conventions. 

Definition 6 (Rational social law). Let g be a game, V a game variable, and < an 

ordering on the possible values of this variable. A social law sl is rational with respect 

to g and V if V(g) < V(g,l>. * 

The reader should notice that rationality here does not imply optimality. We view the 

acceptance of a suggestion made by the designer as rational if it improves upon what 

could be obtained without such suggestion. 9 

7 Recall that in this article we arc restricting the discussion to symmetric games, and so we need not worry 

about different players attaching different values to a game variable. 

R In a case that the game variable refers to a set of elements (such as the set of Nash Equilibria) we take 

< to be an ordering over sets. In the case of maximin, the meaning of < is straightforward. 
gThis does not imply of course that we view an agent who accepts a suggestion which does not improve 

upon its situation as irrational. However, we are especially interested (given our interest in symmetric games) 

in social laws which enable the agents to improve upon their situation. 
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Of special interest are social laws that restrict the agents’ behavior to a particular 

action: 

Definition 7 (&dual convention). A social law that restricts the agents’ behavior to 
one particular strategy is called a (soduE) convention. 

In most of 
has to decide 
conventions. 

this paper we will be concerned with simple games where each agent 

from among two actions; hence, we will be mostly interested in social 

Example 3 (continued). In the coordination game, there are two rational social con- 
ventions with respect to the maximin value, namely restriction to the first strategy and 

restriction to the second. 

Example 4 (continued). In the cooperation game there is one social convention that is 
rational with respect to the maximin value, namely restriction to “cooperate”. lo 

3. Stodmstic games and emergent convention 

As was mentioned in the Introduction, classical results in game theory make strong 
assumptions; in particular, they rely on the game being common knowledge. Much re- 
cent work in ~ono~~s is devoted to investigating more realistic models. One impo~ant 
strand of recent work in economics, which has been strongly inspired by models of 
population genetics, tends to relax not only the assumption that the game is common 

knowledge, but sometimes even that the game is known at all. Specifically, a number of 
models have been proposed in which agents engage in some process of (typically pair- 

wise) inter~tions through which they gain info~ation about the system (s~i~c~ly, 
about how well each of their strategies has fared so far, perhaps about the strategies 
used by other agents, and, if the game is not known in advance, about the game). 

The agents may then use that information to update their choice of strategy, and the 
process repeats. It is then sometimes possible to show that the system will converge to a 
particular global state as if the players in fact had comptete information and were acting 

rationally. 
The models within economics vary widely on how agents accumulate information, and 

how they update their choice of strategy. One important model is that of stochastic games 

and the notion of ~~~~~~u~~~ ~~~~~e ~t~~t~g~e~ (es’s), where it is shown that under 

certain conditions the iterated process will converge to a Nash equilibrium. Kandori et 
al. [ 121 show that by gathering detailed statistics about the relative success of different 

strategies in a symmetric game that is played stochastically, and adopting a rule which 
says the society moves in the direction of the more successful strategies, subject to 

I” By showing that cooperation is a rational convention we do not mean to imply that there are not other 
settings that sanction cooperation; see [2]. 
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certain mutations, the system converges to Nash equilibrium. In [ 131, Kandori and Rob 
extend some of the results of [ 121; they use the best response update rule, where a 
player selects the strategy that is the best strategy assuming other agents keep using 

their strategies (which are assumed to be learned by stochastic interactions). The best 
response update rule is also adopted in the work of Gilboa and Matsui [ 91, as well 
as in additional related work [ 151. The main feature of the above-mentioned work is 
character&d by the fact it uses a model of global interactions where any agent interacts 

stochastically with all other agents, until gathering almost full information either on the 
strategies #adopted by other agents or on the success of various strategies. This is quite 
different from models of local interactions where the agents are assumed to interact 
only with certain neighbors and to update their behavior in a more frequent manner. A 

detailed discussion on global and local models of interactions appear in [ 151. We will 
return to this point later in the end of Section 3.1, when we discuss a novel aspect of 

the model we use. 
In the above discussion we mentioned some results on the emergence of Nash equi- 

libria. We are interested in obtaining similar results for social laws and conventions. 
After all, the process we described for adopting a social law (the one in which agents 
were presented with the opportunity to voluntarily give up some options) made the 
same strong assumptions as classical work in game theory; in particular, it relied on 
the game ‘being known (though not necessarily commonly known), and on agents be- 

ing rational. We now ask whether social conventions, and perhaps even rational ones, 
might emerge also without these strong presuppositions. Specifically, we ask whether 
they might emerge through a stochastic process similar to the framework of stochastic 
games mentioned above. However, that framework allows quite a few variants, and our 

particular :setting has somewhat unique features. 

3.1. From static to stochastic games 

Definition 8 (n-k-g stochastic social game). An n-k-g stochastic social game consists 

of a set of’ n agents, a k-person game g, and an unbounded sequence of ordered tuples 
of k agents selected from a uniform distribution over the n given agents. l1 

Intuitively, a stochastic social game describes a process in which, repeatedly, random 

k agents meet and play the particular game. In each iteration the actions are selected 
by the agents who participate in the game in a synchronous fashion. When agent i is 

selected to play in the game g in one of the rounds of n-k-g, i must select an action 
from among the actions available for it in the game g. An important question is what 
freedom we have in defining the action-selection function (which we will also call the 

update rule). We adopt two principles in this regard: 
l Obliviousness. The selection function cannot be based on the identities of agents 

or the names of actions. 

l1 The uniform-distribution assumption is made to simplify the discussion, but it can be relaxed and the results 

in the paper can be generalized suitably. 



148 E Shoham, M. Tennenholtz/Artijkial Intelligence 94 (1997) 139-166 

l Locality. The selection function is purely a function of the agent’s personal history; 
in particular, it is not a function of global system properties. 

We capture these principles in the following definition: 

Definition 9. A selection function is local if it is a function of the history of actions 

taken by the agent and the corresponding payoffs received. A selection function is semi- 
local if it is a function of the history of actions taken, the corresponding actions taken 
by the other agents encountered by the agent, and the corresponding payoffs. In both 
cases it is required that a permutation of the names of actions in the history lead to a 

corresponding permutation of the actions selected. 

Notice that a local selection function obeys both the locality and the obliviousness 
principles. A semi-local selection function is oblivious, but allows to refer to the ac- 
tions performed by the agents encountered. The intuition behind the above principles is 

perhaps more important that its mathematical definition. We are interested in emergent 

rational social conventions in cases in which we cannot anticipate in advance the games 
that will be played. For example, if we know that the coordination problem will be that 
of deciding whether to drive on the left of the road or on the right, we can very well use 
the names “left” and “right” in the update rule; in particular, we can admit the trivial 
update rule which has all agents drive on the right immediately. Instead, the type of 
coordination problem we are concerned with is better typified by the following example. 
Consider a collection of manufacturing robots that have been operating at a plant for 
five years, at which time a new collection of parts arrive that must be assembled. The 
assembly requires using one of two available attachment widgets, which were introduced 

three years ago (and hence were unknown to the designer of the robots five years ago). 
Either of the widgets will do, but if two robots use different ones then they incur the 

high cost of conversion when it is time for them to mate their respective parts. Our goal 
is that the robots learn to use the same kind of widget. The point to emphasize about 
this example is that five years ago the designer could have stated rules of the general 
form “if in the future you have several choices, each of which has been tried this many 
times and has yielded this much payoff, then next time make the following choice”; the 

designer could not, however, have referred to the specific choices of widget, since those 
were only invented two years later. 

This explains why we do not want the update rules to rely on action names. The 
prohibition on using agent identities in the rules (e.g., “if you see Robot 17 use a 
widget of a certain type then do the same, but if you see Robot 5 do it then never 
mind”) is similarly motivated by the dynamic nature of the society; agents drop in and 

out of the society, denying the designer the ability to anticipate membership in advance. 
We definitely acknowledge that it is often useful to single out certain agents (such as 
Head Robot), and have them be treated in a special manner. We are very interested in 
the role of agents with special identities (and in particular in the role of organization 
structure [ 291)) but even with those it is still the case in a rich setting most of the agents 
will not be distinguishable in this fashion. In this article we investigate the emergence 
of successful joint actions only in such “faceless masses”, and completely ignore the 
role of personal identities. 
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The above discussion concentrated mainly on the obliviousness requirement. Finally 
we need to motivate the requirement of locality. Interestingly, this requirement is not 
met by most dynamic systems put forward in similar settings. In particular, the work 
in economics discussed above, assumes that agents participate in sufficiently many 
interactions so as to have reliable global statistics about the system. This bias has its 

roots in the biological framework which inspired the economic model, and in particular in 
the global fitness function encountered in population genetics [ 11. This global character 
of the update rule is even more blatant in the area of mathematical sociology [ 301, and 
in the work on computational ecologies [ IO]. It is not our claim that global information 
is never available to an individual in a society; counter-examples abound. However, it 
is clear that much of individual decision making is made in the absence of this global 

information, and our aim is to home in on this element. We will return to this topic when 
we compare our setting to dynamic system models in other fields, and, in particular, 

economics. 

3.2. The Highest Cumulative Reward rule 

We are now ready to start investigating useful action-selection rules. In [24] we 

reported on preliminary results of experiments with a number of such rules. Here we 
will concentrate on one particular local update rule, called Highest Cumulative Reward. 

There are a few reasons we concentrate on this rule. First, it is a very natural one. Second, 
past experiments have shown it to be particularly effective in stochastic settings. Finally, 
we will see that, despite its simplicity, this rule gives rise to nontrivial phenomena. (In 
the following definition, recall that in this article games are by default 2-person-2-choice 

games.) 

Definition 10 (HCR). According to the Highest Cumulative Reward update rule (or 
HCR), an agent switches to a new action iff the total payoff obtained from that action 
in the latest m iterations is greater than the payoff obtained from the currently-chosen 

action in the same time period. 

The parameter m in the above definition denotes a finite bound, but the bound may 

vary. As we mentioned, HCR is a simple and natural update rule. It is, however, clearly 
not the only such rule. In particular, it would be natural to consider update rules that use 
a weighted accumulation of feedback rather than simple accumulation. Indeed, we have 
experimented with such rules as well. However, the results obtained, both analytic and 

experimental, were not qualitatively different from those obtained for HCR, and hence 
we stick with the simpler rule. A more detailed discussion of other update rules can be 
found in [ 241. 

Clearly, HCR is a local update rule. (For the reader familiar with the relevant literature 
in economics, we remark that HCR stands in contrast to the best response update rule, in 

which the agent applies its best response to the set of strategies adopted by, essentially, 

all other agents.) We now would like to understand how HCR affects the emergence of 
rational social conventions, and, in particular, its effects on the evolution of coordination 
and cooperation. In fact, we are able to show a result that applies to a somewhat broader 
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class of games, which include the coordination and cooperation games. We call these 
games social agreement games. 

Definition 11. A social agreement game is a symmetric game g with matrix 

in which x, y, u, u # 0, either x > 0 or y > 0 and either u < 0 or v < 0; if both x > 0 
and y > 0 then x = y. ‘* 

It is easy to see that the cooperation game and the coordination game are both social 

agreement games. 
The theorems below that refer to HCR assume that the parameter (memory bound) 

m is much larger than the entries in the payoff matrix of the game. We also assume 

that m > n > 4, and that the payoffs in g have finite decimal representation. With these 
assumptions, we have: 

Theorem 12. I3 Given an n-2-g stochastic social agreement game, placing no con- 
straints on the initial choices of action by all agents, and assuming that all agents 
employ the HCR rule, the following holds: 

l For every E > 0 there exists a bounded number M such that if the system runs 
for M iterations then the probability that a social convention will be reached is 
greater than 1 - E. 

l Once the convention is reached, it will never be left. 
a If a social convention is reached then it guarantees to the agent a payoff which is 

no less than the maximin value that was initially guaranteed. 
l Furthermore, if a social convention exists for g that is rational with respect to the 

maximin value, then the social convention reached will be rational with respect to 
maximin. 

The above theorem shows that stable conventions can emerge using the a purely local 
update rule. In addition, it discusses also the evolution of stable conventions which are 
not Nash-Equilibria. In particular, our results show that using a purely local update rule 
a rational stable convention (with respect to maximin) would emerge in the coordination 
and cooperation games: 

Corollary 13. The HCR update rule guarantees eventual emergence of coordination 
and of cooperation, that is, rational conventions in the respective games. 

l2 It will be perhaps a bit jarring to some readers to see a formulation that depends on notions of “positive” 

and “negative” rewards, and thus one that does not allow a constant offset of all numbers. It is debatable 
whether the notions of “positive” and “negative” rewards are defensible; we believe that at the very least they 

are not trivially dismissed. Furthermore, even if one wished to do away with an objective notion of zero, 
one could perhaps synthesize one dynamically based (for example) on average payoffs encountered so far 

(related ideas appear, for example, in [ 231). However, this discussion is beyond the scope of our paper. 
t3 Proofs appear in Appendix A. 



3.3. The eficiency of evolution: a lower bound 

The above results shed light on the eventual emergence of social behavior, but they 
say nothing about the efficiency with which this behavior is attained; the remainder 
of this article is devoted to this question. Our study of the efficiency of convention 

evolution will refer to the number of iterations required for obtaining a desired behavior. 
This measure of efficiency is different from the one which has been studied in models 

of stochastic global interactions. The measure of efficiency in that work has been the 
number of interaction periods which is required to reach a Nash-equilibrium. Each such 
interaction period consists of a huge number of iterations (in our terminology) where 

the agents gather information about each other. We start by presenting a general lower 
bound on the efficiency of convention evolution. This will be obtained by the following 
definition and theorem. 

Definition 14. Let g be a social agreement game. Consider iteration t of an n-2-g 

stochastic social game, and the n . (n - 1) games (possible agent interactions) that 
might be played at that iteration. Define X,(t) to be a random variable that contains 
the number of games that might be played in iteration t and that result in a payoff 
for a player that is less than the one obtained by a rational social convention. Let 

T(n) be a function that associates with each n a number (of iterations). Given a local 
update rule R, and some distribution on the initial actions of the agents, we will say 
that R guarantees the emergence of a rational social convention after T(n) iterations, if 
E[ X,, (T( n) ) ] converges to 0. 

Roughly speaking, we measure how far the system is from reaching a rational social 
convention. We would like this distance to be as close to 0 as possible in a minimal 
number of iterations. 

Theorem 15. Let g be a social agreement game, and let R be a local update rule. ” 

Assume there is some non-zero constant probabilig for starting with any particular 

action by any particular agent. [f R guarantees the emergence of a rational social 

convention in the related n-2-g games in T(n) iterations, then T(n) = a( n log(n) ). 

4. The evolution of coordination: Experimental results 

At this point we seem to be converging on an understanding of the dynamics brought 

about by HCR; at least for social agreement games, we have a guarantee of eventual 
emergence to a rational social convention (if one exists), as well as a cautionary lower 
bound on how fast we can expect to arrive at such a happy occasion. It would be natural 
to expect that subsequent investigations would provide finer and finer lower and upper 

bounds, increasing our understanding of HCR. 

IJ Similar results hold for semi-local rules. 
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Unfortunately, this has not been our experience. What we found instead was that 
rather specific properties of the particular games being played flavor the dynamics so 

strongly that it appears extremely difficult to arrive at general results at the level of the 
update function. We arrived at this conclusion through extensive computer simulations, 
which yielded results that not only had not been anticipated, but in fact have not yet 
been (fully) explained mathematically even after the fact. 

Let us illustrate the point with the two games highlighted above, the coordination and 
cooperation games. Both are instances of social agreement games, and hence subject 

to the upper and lower bounds presented in the previous section, and yet the practical 
experience with the two has been radically different. In the case of the coordination 
game, the HCR rule not only led to the emergence of convention, but it did so at a 

rate that approaches the theoretical lower bound. In contrast, in the cooperation game 
the HCR rule proved to be very inefficient, rendering it useless for most practical 

applications. 
In the remainder of this article we restrict our attention to the coordination game, 

and explore various aspects of the efficiency with which coordination evolves. l5 Unless 
stated otherwise, when we refer to convention evolution, we will refer to the emergence 
of rational social convention in an n-2-g stochastic social game, where g is the coordi- 
nation game. More specifically, when we say that a set of agents reached a convention, 
we mean that the agents in that set adopt the same strategy. All of our discussion and 
results remain valid when we replace the constant 1 in the coordination game, by any 
other constant x > 0. In this section we take the default value of m (in the definition of 
HCR) to be greater than the number of iterations (i.e., agents refer to their full history) ; 

we will be explicit when we depart from this default. 

Unless stated otherwise, the experimental results appearing in this section refer to 
experiments with 100 agents starting with random initial strategies. Each experiment 

consists of many trials, each of which consists of a run of the stochastic game for a 
given number of iterations. 

4.1. The effect of update frequency 

The first parameter and modification we consider concern update frequency. In the 
previous section we assumed that each agent updates l6 its behavior at each iteration. 
What happens if agents update their behavior less frequently? This condition might 
be imposed by internal limitations of the system, or alternatively might be selected 

voluntarily to impose greater stability on the system. 
A plausible a priori intuition about the effect of delaying the application of the update 

function might be as follows. If one does not delay at all, agents may react on the basis 

of insufficient information, leading to a lot of thrashing in the system. If one delays too 
much, agents may be preventing from updating even when appropriate. So perhaps there 
is some optimal, middle-of-the-road course of action. 

I5 The efficiency of cooperation evolution is discussed further in 1261. 
I6 By “update” we mean the application of the update function; the result need not be a change in action. 
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Fig. 1. The effects of update frequency. 

Particularly, in this setting this intuition is not born out. We found that when the 
frequency of update decreases, then the efficiency of convention evolution decreases. 
Our results are illustrated by Fig. 1. In this figure, the x coordinate describes the distance 

between iterations in which update is performed, while the y coordinate describes the 
number of trials from among 4000 trials of 1600 iterations each in which more than 
95% of the agents reached a convention. 

4.2. The ejTect of memory restarts 

We investigated the effects of memory size on the efficiency of convention evolution. 
We consider two forms of limited memory; one is treated in this section, and the other 

one will be treated in Section 4.4. One type of limited memory is a memory that is 

restarted from time to time. When the memory is restarted, the agents’ current strategies 
(the ones they will now start with) are not forgotten, but previous history is. This might 
be in particular interesting in systems which stop operating for a short while from time 

to time. For example, a society might be interested in a particular coordination only in 
some periods of the year, where agents are assumed to forget what they have exactly 
seen in the previous periods although they still remember their current (latest) strategy. 
We investigated the efficiency of convention evolution as a function of the frequency of 
memory restarts. We found that when the distance between iterations where the memory 
is restarted decreases, then the efficiency of convention evolution decreases. This is 
illustrated in Fig. 2. The x coordinate of this graph corresponds to the distance between 
iterations where the memory is restarted. The y coordinate describes the number of trials 
from among 4000 trials of 800 iterations each, in which more than 85% of the agents 
reached a convention. 

The reader may be tempted to treat this as an “obvious” result; however, full memory 
is not always an advantage. Sections 4.3 and 4.4 will provide some examples; here is 

another example. We ran an experiment in which agents restarted their memory always 
and only after changing their strategy. In that case the evolution of convention was even 
more efficient than in the case of full memory; in 3298 from among 4000 trials of 800 
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Fig. 2. The effects of memory restarts, 

iterations each, more than 85% of the agents reached a convention (while with complete 
information this was true of only 3010 of the trials.) We will explain why full memory 
is not always an advantage in the following sections. 

We have so far varied update frequency and memory independently; we now show 
that these two parameters interact. Consider the results from Section 4.1, where we 
showed that the rate of convention evolution is a monotonic increasing function of 
update frequency. We now show that decreasing memory blocks the degradation of 
convergence with the decrease in update frequency. Specifically, in this experiment we 
adopted the memory-restart model, and varied together the memory-restart frequency 
and the update frequency; that is, at the end of each window each agent updated its 
choice according to HCR for that window. The general result we obtained is that when 
update becomes infrequent (there is a long delay between strategy updates), then it 
is better to restart the memory from time to time than to rely on the whole memory. 
Our results are illustrated in Fig. 3. The x coordinate of this figure corresponds to 
the update frequency, which is equal to the number of iterations between consecutive 
memory restarts. That is, in this case, we had a single interval which served both as 
the update frequency and the memory restart frequency. The y coordinate corresponds 
to the number of trials from among 4000 trials of 1600 iterations each in which 95% of 
the agents reached a convention. It is illuminating to compare Fig. 3 to Fig. 1 (where 
full memos is ~surn~) ; when the update frequency drops below about 100 iterations, 
it becomes better to use the statistics of only the last window than to rely on the entire 
history. 

The rationale of the above result may be explained as follows. When agents have 
update delays they start relying on unreliable old info~ation. By restarting its memory 
the agent succeeds in getting rid of some of this unreliable info~ation. 

One of the implications of the above result, from a design perspective, is that in 
systems where there are update delays the designer may wish to tell the agents to restart 
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Fig. 3. The case in which update frequency = memory restart frequency. 

their memory from time to time in order to speedup the evolution of conventions. In 

the next section we will see that when there are no update delays even a more concrete 
kind of advice/result can be supplied/obtained. 

4.4. Limited memory windows 

A more continuous form of limited memory is one in which each agent at each time 
keeps a limited window into its past experience, and bases the HCR rule on only that 
window, We have considered two forms of windows, one in which an agent remembers 
the last m iterations in which it participated in a meeting, and another in which the 

agent remembers the last m iterations, regardless of whether it participated in a meeting 

in those. 
Our results of these two experiments are illustrated in Figs. 4 and 5, respectively. In 

both of these figures the x coordinate describes the size of the memory window, and 
the y coordinate corresponds to the number of trials from among 4000 trials of 800 

iterations each, in which more than 85% of the agents reached a convention. Note that, 
somewhat surprisingly, in both cases it pays to forget, though some minimal memory is 
essential (in the first case this minimum is in fact equal to 2 iterations, and therefore 
this can be seen more easily in the second case). 

The rationale of this result is that the old history of the agents is less adequate than 
the relatively new information, and as a result it may be better not to rely on old 

information as part of the data a decision refers to. On the other had, too short memory 
may not enable the agents enough sampling of what is going on in the system, and may 
lead to inefficient behavior. 

A good choice of the memory window while applying HCR will give us in fact an 
update rule whose behavior is close to optimal. The case in which the memory size 
is between 2n to 3n (where it is the number of agents) gives us the above-mentioned 
close to optimal behavior, which is in fact a speed of convergence of 0( n . log(n)). 
More specifically, given that there are n agents who adopt HCR with a memory window 
3n (where this number refers to the overall number of iterations, as in Fig. 5), we 
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observed that all of the agents reach a convention after less than 3n . log(n) iterations 
(when we vary the number of agents.) The optimality stems from the above fact and 
from Theorem 15. The important point is that HCR with an appropriate limited memory 

window can be supplied to the agents as an update rule that will enable an efficient 
convention evolution in a system where there are no update delays. 

One implication of this result is that it enables the designer to supply the agents with 
a concrete useful update rule which will enable conventions to evolve rapidly when there 
are no update delays. This may be of course most useful in situations where conventions 
are essential but can not be determined in advance. 

4.5. Further discussion of HCR 

The previous sections have discussed several results about the efficiency of convention 
evolution. Our measure of efficiency has been the number of agents which adopt a 
convention after a given number of iterations. In particular, our graphs show the number 
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of trials in which, after a particular number of iterations, the number of agents who 

adopt a similar (most popular) strategy is greater than a particular threshold. Our 
qualitative results do not change when different thresholds and numbers of iterations are 
used. 

In addition to the above, one may be interested also in the dynamics of HCR for fixed 
assignments of the parameters. As it turns out, the dynamics are quite simple for any 
selection of the parameters. The number of agents who adopt the more popular strategy 
may have little fluctuations in the beginning of the process; then, this number increases 
until a convention is obtained; the speed in which this number increases, decreases 
along time. The explanation of these phenomena is as follows. The fluctuation appears 

mostly when the numbers of agents adopting different strategies are equally divided, 
and it is simply a result of the random selection of agents. The fact that the increase 
in the number of conforming agents is more modest towards the end of the process is 

explained b:y the fact that it takes time to a non-conforming agent to be selected by the 
process. We illustrate this by Fig. 6, in which HCR is used by an agent with memory of 
3000 (i.e., igreater than the maximal number of iterations), and with no update delays. 

We consider the case where the strategies are equally divided among the agents in the 
beginning of the process. The x coordinate corresponds to the number of iterations, and 
the y coordinate corresponds to the number of agents conforming to the most popular 
strategy in that point. 

4.6. More complicated decisions 

The coordination game captures a situation where a selection among a pair of rational 
social conventions has to be made. This can also be considered as a selection of an 
option from among two possible options, without an a-priori agreement about which 
option should be chosen. What happens if the agents have to agree on an option from 
among more than two available options, that is, on something more complicated than 
a bit? How does the number of options (potential conventions) affect the efficiency of 
convention evolution? 
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In order to answer the above question we use the following observation: whenever an 
agent performs a particular strategy and gets a particular feedback in a 2-person-2-choice 
coordination game, it can interpret it as an observation of the strategy used by the agent 
it encountered. For example, if the agent performs strategy a and gets a feedback of 

I, we can say that the agent observed that another agent used the strategy a as well. 
Having the above inte~r~tation for the feedback, and assuming we restrict ourselves to 
quasi-local update rules only, we can define: 

Definition 16. The External Majority (EM) update rule is an update rule which says: 
Adopt strategy i if so far it was observed in other agents more often than any other 

strategy and remain with your current strategy in a case no other strategy has been 
observed in other agents more often than it. 

We can show: 

Lemma 17. EM coincides with HCR in an n-2-g stochastic social game, where g is 

the coordination game. 

Given the above lemma, HCR and EM are isomorphic in the context of 2-person- 

2-choice coordination games. Hence, although EM and HCR do not coincide when 

there are more than two choices in the coordination game, a natural extension of 
our study would be to discuss EM in the context of 2-person-s-choice coordination 

games. 
Notice that the coordination game makes perfect sense, and it is of major interest, 

when agents are able to observe the behavior of agents they encounter. Moreover, even 
if the agents know the payoff matrix of the game, as well as are able to observe the 
behavior of agents they encounter, but do not have agreement on the names of strategies 
(i.e., the designer can not just tell them which strategy they should adopt) we still get 
a most interesting and fund~ent~ problem. This is due to the full symme~y we have 

here. For example, the example we presented in Section 3 will still be valid in this case, 
as well as many other examples in the study of coordination [ 181. In the sequel we 

will therefore assume a restriction only to quasi-local update rules, where the agents can 
observe the behavior of agents they encounter. 

We would like to mention that by allowing quasi-local update rules, some of the 
power of our setting is lost. We will still be interested in local adaptation of the agents, 
in the sense that they may update their behavior at each iteration (and not in periods, in 
each of which the agent learns the strategies of the other agents, as in case of the best 

response update rule discussed in the economics literature), but the update rules may 
now refer to the strategies executed by the other agents in the past. 

As mentioned, we would like to discuss the case in which the number of potential 

conventions is greater than 2: 

Definition 18. An extended cuordi~atia~ game is a symmetric 2-person-s-choice game, 
where the payoff for both agents is x > 0 if and only if they perform similar actions, 
and it is --x otherwise. 
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Fig. 7. The effects of the number of potential conventions. 

Our general results are as follows. What we find is that adding more potential conven- 
tions decreases the efficiency of convention evolution in a less than logarithmic fashion. 
In addition we find that the absolute amount of success in convention evolution decreases 
in less than logarithmic fashion: For the number of successes of convention evolution 
to decrease by factor of 2, we need to increase the number of potential conventions by 
a factor of more than 4; for them to decrease by a factor of 3 we need to increase the 
number of potential conventions by a factor of more than 8. l7 Intuitively speaking, our 

results point to the following encouraging fact: the efficiency of convention evolution is 
not affected too badly by an increase in the number of potential conventions. 

Some specific results are illustrated in Fig. 7. The n coordinate describes on a loga- 

rithmic scale the number of potential conventions, while the y coordinate describes the 
number of successful trials (more than 85% reached a convention) from among 4000 
trials of 800 iterations each. 

The message of this result from a designer’s perspective is that, by supplying an 
appropriate, rule, the emergence of useful conventions is not hopeless also for complex 
systems where the number of potential conventions is more than two. Naturally, the 
emergence of more complex kind of conventions (e.g., where the convention itself is 
some structured strategy) may be an interesting subject for future research. 

5. Discussion and related work 

Several lines of research are related to our work. These include work in population 

genetics, statistical mechanics, computational ecologies, quantitative sociology, machine 
learning, and mathematical economics. 

Recent work in mathematical economics is the one most related to our work, and 
was discussed in some detail in the previous sections. We would like to re-emphasize 
some of the major differences between our study and the related work in mathematical 

I7 We have verified these basic results also in the case of limited memory. 
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economics. The model we use is a model of global interaction [ 151 which has been 
borrowed from the related literature, but our adaptation process is local; I8 the agent 
is not assumed to update its behavior after some period of interactions in which it is 
assumed to gather statistics about the other agents, but to obey a local adaptation rule 

where it is able to update its behavior at each point of the matching process. One 
other point is that in our study the agent need not be aware of the strategies taken by 
the other agents. In addition, our study concentrates on issues such as the efficiency 

of convention evolution. We also note that the efficiency of convergence in the above- 
mentioned related economic settings [7] refers to the number of periods of interaction 
among the agents, where each period consists of a gathering of statistical information 
about the other agents. This is of course quite different from the type of efficiency 
studied in this paper. We also concentrate on the effects of various basic parameters 
of the adaptive scheme on the emergent behavior of the system. We study the effects 
of update delays, memory restrictions, and other parameters. Although memory plays a 
role in part of the related work in economics [ 3 11, the effects of this parameter (as 

well as of the other parameters discussed in this paper) on the efficiency of convention 

evolution has not been discussed. The final comparative point concerns the type of 
solutions we are interested in. In particular, some of our results refer to the emergence 
of social conventions that are not Nash equilibria. 

Although work in mathematical economics is the most related to our work, the 

discussion in this paper would not be complete without at least a brief description of 
the work carried out in other related fields. Each of these works involve a setting with 
multiple elements (whether they are called particles, individuals, cells, or agents), which 
repeatedly undergo relatively simple local changes. The questions usually asked center 
around interesting global system properties that emerge over time out of these local 
changes, such as equilibria and phase transitions. 

It is often tempting to try to carry over lessons from one setting to another. Indeed, 
some of these areas were inspired by one another; for example, work in quantitative 
sociology was inspired by work in statistical mechanics, and work in economics was 
inspired by work in population genetics. However, these inspirations have tended to be 
in spirit rather than in detail; the actual dynamic systems in the various areas are for the 

most part quite different, and also very sensitive in the sense that even small changes 
in them result in quite different system dynamics. This has also been our experience 
with our own framework; initially we had hoped to borrow results from other areas, but 
our framework then turned out to be sufficiently different from any of the others so as 
to make such borrowing impossible, or at least very difficult. We are still very much 
interested in understanding technical connections with these other areas and our own 
work, anticipating cross influences, but at this point all we will do is briefly describe 
work in these other areas. 

Statistical mechanics models are a powerful tool for explaining a variety of phenomena 
in physics. An important family of models in that area goes under the general name of 
the Ising model [ 141, In a typical Ising model we have a set of spins, each of which 
can be in -l/l state, and which are organized into some fixed spatial arrangement 

‘* The reader should be careful not to confuse at this point global interaction with global adaptation. 
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(such as a one-dimensional sequence or a two-dimensional grid). At each point in time 
the system is in some configuration (that is, the spins each have a particular value), 
and this system has a certain measure energy, or entropy. The energy has a component 
representing local interactions among the spins, and a component (that is sometimes 

omitted) representing the effect of some global magnetic field. The interaction among 
spins is usually limited to neighboring spins; a typical formula for the energy of the 
system willl include the sum of all multiples x . y, where x and y are the values of 
neighboring spins. In terms of this energy a probability distribution is defined over the 

space of all configurations, which determines the likelihood of the system actually being 
in any particular configuration. This probability distribution has strong independence 

properties: the probability of a particular spin having a particular value is sensitive only 
to the values of the neighboring spins, and is independent of the values of spins that are 
spatially reimoved from it. 

The Ising model has proved useful for the investigations of various physical properties 

such as spontaneous magnetization (that is, a majority of spins ending up with the 
same value), but it is also abstract enough to have motivated other applications. For 

example, in some work within quantitative sociology [ 301 the spins were interpreted 
as “opinions”, the energy between individual spins as “tension among individuals with 
differing opinions”, and the orientation of the magnetic field as “the opinion of the 

government”. 
As described, the Ising model does not provide a dynamical system, in the sense 

that it does not provide (e.g. differential) equations that describe the evolution of the 
system over time; what it does instead is define stable (i.e., low energy) states of the 
system. This is also true for the more elaborate framework of spin-glass. However, both 
have been .augmented to include a dynamical system. These dynamic models have also 

found applications in other fields. One is quantitative sociology, where the models have 
been used to predict opinion shifts over time within large populations [ 301. Statistical 
mechanics also provided the inspiration to computational ecology [ lo] ; this work is 
based on the idea that the existence of many agents in an advanced computerized 

framework creates a “computational ecology”. A computational framework, similar in 
its spirit to quantitative sociology, is developed and analyzed using the tools of statistical 
mechanics. The notions used there are “strategies” of individual agents, the utility of 

having identical strategies (“cooperation”) as well as its disadvantage, due to resource 
conflicts (“competition”). A precise continuous framework is built, which allows several 
predictions on the behavior of those “computational ecologies” (such as chaotic behavior 

in some situations). 
These multi-agent frameworks borrow a powerful tool from statistical mechanics, but 

as a result they have a heavily “non-local” or “non-mechanical” flavor; the dynamics 
speak abou.t how certain global statistics change over time (such as the average number 
of cooperating agents), rather than about how an individual agent changes its local state 
on the basis of its current local state and/or history. This of course is quite unlike our 
own framework, where the dynamics of the atomic changes are the basis for change, 
and any statistical properties are derived from these. 

Work in population genetics (e.g., [ 1,3,19]) and work in urt$ciul life inspired by 
it (e.g., [ :16,20] ) is closer to ours in this sense. Here we have a set of individuals, 
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each belonging to one of several types. The system evolves in “generations”; in each 
generation the individual evolves in a way that is defined by its type and the environment 

(which includes the other agents), and at the end of the generation the “fitness” of 
each agent is computed, applying some given fitness function. The probability that an 

individual will survive into the next generation is proportional to its fitness. Additionally, 
usually between generations a process of “recombination” takes place, in which some 
pairs of individuals in the population (the “parents”) may combine to produce a new 

individual (“the offspring”), whose type will in general be defined by, but different 

from, the types of the parents. 
This setting is thus more local, or mechanical, than the frameworks discussed ear- 

lier; the activity of each agent within a generation and the reproductive process have a 
transition-oriented, automata-like flavor. An important global component remains, how- 
ever, namely the fitness function. The fitness function, which represents unspecified 

external selection forces, is computed on the basis of global system properties, and is 

applied to all agents equally. For example, if we consider the earlier ‘~opinion” example, 
a typical definition of the fitness of an individual with an opinion in a population would 

be the proportion of individuals in the population having the same opinion. This global 
element turns out to have a strong influence on the dynamics of the system. (This is 
perhaps the deepest difference between the population genetics setting and our own; but 

of course may other differences exist, incIuding the notion of an accumulated history, 
limited memory, and our particular stochastic process of encounters.) 

The model used in population genetics has strongly influenced work in mathematical 

economics; this is especially true of work published in recent years. This recent work in 
mathematics economics is the closest in spirit to our work, and therefore we discussed 
it in detail previously_ 

The way the agents update their behavior in our setting, has some similarity with 
learning rules used in the reinforcement learning literature (e.g., [ 11 I), and the fact 
that we have a multi-agent system where agents behave based on local feedback has 

some similarity with work on learning automat [ 221. Neverthel~s, as we mentions, 
our work borrows a framework of agent interactions which is common in the recent 
mathematical economics literature inspired by theoretical biology. This makes our study 

much different from existing studies in reinforcement learning. Moreover, our objective, 
the study of emergent rational social conventions, is different as well. 

Our work is clearly relevant to previous work on Artificial Social Systems which 

we have mentioned before, as well as to theories of social commitments [ 5,171 and 
social reasoning [ 271. The research reported in this paper is concerned however with 
dynamic systems where social behavior is an emergent property of the system. The 

emergence of social reasoning and complex social commitments are beyond the scope 
of our current work, and may be a subject for further research. Another topic which 
may be relevant for future research is concerned with the concept of negotiations, which 
has been widely discussed in the distributed and decentralized AI literature [ 4,6], One 
can consider the situation where agents may have a limited negotiation ability which 
they may use when encountering each other in the stochastic setting; t9 based on these 

I9 Some of the results in [24] are concerned with a limited form of such extension. 
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interactions the agents may learn for example about available strategies they have not 
considered im the past. Finally, since our work in concerned with the emergence of social 
conventions, it is related to work on cooperative games and mechanism design [ 8,321 
where cooperative solutions to multi-agent interactions are devised. However, since our 

work is concerned with the emergence of such cooperative solutions, it becomes more 
related to the above-mentioned work on complex dynamic systems. 

6. Summary 

We used the framework of stochastic social games in order to investigate the emer- 

gence of rational social conventions and the efficiency of that process. In particular 
we concentrated on the emergence of rational social conventions in a most basic type 
of coordination problem, and supplied results on the emergence of conventions and its 
efficiency for a class of games. 

Besides the novelty of our work, which we have previously discussed, we believe 
that it also creates a bridge between work in economics and work in machine learning, 

We borrow from the economics literature the model for stochastic interactions among 

agents, which is a most popular and dominant model for agent interactions. On the other 
hand we borrow ideas of reinforcement learning [28] from the AI literature in order 
to capture the fact that agents use local update rules to update their strategies. As a 
result, we get a combined framework where local update rules are used to update an 

agent behavior in a model of global interaction. Since both the local updates [ 11,22,28] 

and the model of global interactions (see [ 151 for a survey) are taken to be of major 
importance to the corresponding communities, we believe that the introduction of our 
framework may lead to additional and fruitful cross-fertilization. 

Appendix A. Proofs of theorems 

Proof of Tlheorem 13. Recall that the payoff matrix of a social agreement game has 
the structure 

in which either x > 0 or y > 0, either u < 0 or u < 0, and if both x > 0 and y > 0 
then x = y. 

We prove the theorem by case analysis. We can assume without loss of generality that 
x > 0. Noti.ce that the cooperation game is a special case of the case in which y < 0, 
u < 0, u > 0, and the coordination game is a special case of the case in which y > 0, 
u < 0, u < 0. We will provide the proof for these two cases; proofs for the other cases 
can be obtained in a similar fashion. 

Consider the case where y > 0, u < 0, u < 0. In this case a rational social convention 
will restrict the behavior of all agents to a similar strategy. First, observe that there 
always exists a pair of agents with identical strategies. Then, notice that the following 
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process can be generated with a probability p = l/f(n) and leads to a rational social 
convention (all agents will adopt the same strategy) in g(n) iterations, where both 
f(n) and g(n) are bounded by an exponent of the form nS where s is polynomial in 

m (the memory size) and n. The process is defined as follows: a pair of agents (i, j) 
with the same strategy is selected and meet each other until all of the rest of the agents 

forget their past. Afterwards, i meets a member x # j, and then meets j. The last 
step continues in a loop where at each time i meets a new x until it meets all the 
members in the society. It is easy to see that this process will bring to a rational social 

convention (all agents will adopt the same strategy). As a result, if the system runs 
for M = k. g(n) . f(n) iterations then the probability that a rational social convention 

will not be reached (not all of the agents will adopt the same strategy) is at most eWk. 
Taking k > - log(e) yields the desired result. 

Consider the case where y < 0, u < 0, u > 0. In the sequel we will refer to an 

agent who adopts the strategy c as a “cooperative” agent and to an agent who adopts 
d as a “non-cooperative” agent. In this case a rational social convention will restrict 

all of the agents to be cooperative. The structure of the proof is as the structure of 
the proof regarding the case where y > 0, u < 0, u < 0, but the basic process will 
now change. This process will now at first guarantee that there will be at least two 
cooperative agents. In order to guarantee this, the process will include in its beginning 
a procedure of creating a pair of cooperative agents (if no such pair exists). This 
procedure selects two non-cooperative agents and two additional agents, and let the 

latter pair meet until the former pair will forget its past. Afterwards the process selects 
the former (non-cooperative) agents to participate in a meeting. This will create a 
pair of cooperative agents. In a second stage this pair of cooperative agents will meet 
until the other agents will forget their past, and then pairs of non-cooperative agents 
will meet sequentially. This will create a society where at most one agent is non- 

cooperative. In order to make this agent cooperative the process will end with the 
following procedure: the non-cooperative agent will meet a cooperative agent until it 
will become non-cooperative as well, and then a pair of cooperative agents will be 
selected and meet each other until the rest of the agents will forget their past. The 
process will end by an encounter in which the two non-cooperative agents meet each 

other. 
The above process will take place with probability p = l/f(n) and will guarantee 

that after g(n) iterations all of the agents will become cooperative, where appropriate 
exponential bounds can be given for f(n) and g(n). Hence, the number M can be 
calculated as for the coordination game, and the desired result can be obtained. 

The results for the other cases are determined similarly. In all of these cases all agents 
will eventually adopt a similar strategy S, where the payoff for the joint strategy (s, s) 
is greater than 0. This implies that social conventions will be reached, and that they 
will never be dropped (given the structure of HCR). Notice also that any rational social 
convention of the game g will restrict the behavior of agents to a particular strategy 
where the payoffs for both agents is positive. Hence, given that if both x > 0 and 
y > 0 we have that x = y, and given the structure of emerged conventions discussed 
above, we get that if a rational convention exists it will also emerge in the related 
process. q 
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Proof of Theorem 15. Let Yn (i) be a random variable which contains the number of 
agents that did not participate in any iteration of n-2-g until iteration i. It is easy to 
see that E[:X,(i)] 2 k-E[Y,(i)] for some constant k > 0 and for every n and i. In 

particular, E[ X, (T( n) )] 2 k . E[ Y,(T( n)) ] for every n. Hence, it suffices to show 
that if E[ I’, (T( n)) ] converges to 0 as a function of n, then T(n) is at least of the 
order of n . log(n). The probability that a particular agent will not be chosen along 
T(n) = (rz - 1) . f(n) iterations is bounded by 

(1 (n A J+-‘).f(“) 

which converges to ep2f(“), If eW2fcn) > l/n then we will get that E[ Y,(T( n)) ] > 1 
and hence there is no convergence to 0. But, in order to have em2fcn) < l/n we must 
have f(n) > 0.5 . log(n) (where we consider without loss of generality the natural 
log). This gives us the desired lower bound. Cl 

Proof of ILemma 17. For ease of exposition let us denote the strategies by 0 and 1, 
and let ci be the accumulated payoff for strategy i of a given agent j. Notice that ci 
equals to the number of times that j met an agent which used i minus the number of 

times j met an agent which used 1 - i, when its (j’s) strategy was i. According to 
HCR, an agent chooses i if ci is larger than cl-i, but cc - cl = (number of times you 

met 0 when you had 0 minus number of times you met 1 when you had 0) -(number 
of times you met 1 when you had 1 minus number of times you met 0 when you had 
l), which equals the number of times you met 0 minus the number of times you met 
1. Hence, we get that the comparison between the accumulated payoffs coincide with 
the comparison between the number of times the different strategies were encountered 
in other agents. This gives us the desired result. 0 
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