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Abstract

We introduce a new mechanism-design problem called fair imposition. In this setting a

center wishes to fairly allocate tasks among a set of agents whose cost structures are known

only to them, and thus will not reveal their true costs without appropriate incentives. The

center, with the power to impose arbitrary tasks and payments on the agents, has the

additional goal that his net payment to these agents is never positive (or, that it is tightly

bounded if a loss is unavoidable). We consider two different notions of fairness that the center

may wish to achieve. The central notion, which we call k-fairness, is in the spirit of max–min

fairness. We present both positive results (in the form of concrete mechanisms) and negative

results (in the form of impossibility theorems) concerning these criteria. We also briefly discuss

an alternative, more traditional interpretation of our setting and results, in the context of

auctions.
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1. Introduction

Central allocation of tasks among multiple agents is a fundamental problem in
several fields, including economics, computer science, and operations research. In
this class of problems there is a center, or procurer, who aims to allocate one or more
tasks among several agents (e.g., companies, employees, or computers) in a way that
meets some set of criteria. In the setting we consider, fair imposition, the center
possesses the ability to impose arbitrary behaviors on the individual agents, but has
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no access to their private information (specifically, their costs for performing the
tasks). We assume that this dictator is frugal in that he wishes to relegate the entire
cost to the agents (a goal formally referred to as no deficit). However, we also assume
that the dictator is benign in the sense that he wishes the agent costs to be both
equitable and as low as possible. Later we will formally define notions of fairness
that capture these general goals.

The setting of fair imposition is quite natural. It can serve as a model of how a
large corporation might divide an unexpected task among its business units. For
example, consider a corporation with three factories, each operating as a profit
center. Imagine they are all due for a centrally financed upgrade that would result in
a boost to productivity, except that the magnitude of each boost is known only by
the individual factory manager. Suppose that budget cuts will force the CFO to
cancel one of the three factory upgrades, and he has the following considerations: he
wishes the overall productivity of the firm to decline minimally, and he wishes that
each of the managers feel that the outcome is fair. What protocol will achieve these
goals?

It is not hard to come up with other applications of this general framework. For
example, it can serve as a model of planning in a centralized economy.1 The
application that in fact served as initial motivation for this work is military air
transportation. The US military uses civilian aircraft for a surprisingly high fraction
of its transportation needs. This is true even in times of peace, and certainly in war
times. In principle, the government has the ability to commandeer the aircraft at will,
but of course that is not a tenable course of action. Instead it pays the civilian
carriers, but the way in which it currently does so is largely ad hoc and inefficient.
The models and protocols presented in this paper may, at least in principle, offer a
better alternative.

What are the tools available to the center? In principle, all he can do is institute a
procurement protocol, which is an orderly procedure of information exchange and an
outcome function. The outcome function selects agent(s) to provide the service(s)
and determines payments to or from the agents—both as a function of this
information exchange. The trick is to design the protocol so as to induce the agents
to exchange information in way that leads to an outcome desired by the center.

To show the issues that arise in the design of such a protocol, consider the
following straw-man protocol for allocating a single task to one of n agents. Let v½1�
be the lowest cost for this task among the agents. In this protocol the center asks
each agent to declare its cost, assigns the task to the agent with the lowest declared

cost (call it v̂½1�), pays n�1
n

v̂½1� to this agent, and collects a payment of
v̂½1�
n

from each

other agent. The net payments by the center are exactly zero, and if v̂ ¼ v then all

agents suffer a loss of exactly
v½1�
n
: Notice that this outcome minimizes inequity among

the agents and bounds the loss of each agent at the lowest possible amount, given our
requirement of no deficit. Formally, we define 1-fairness to be achieved if no agent

suffers a loss of more than
v½1�
n
: More generally, k-fairness is achieved when no agent
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loses more than
v½k�
n
; where v½k� is the k-lowest cost among the agents. Notice that this

notion fairness is based on maximin principle of [8]. The comparable idea in
computer science is max–min fairness, which is a widely used criterion for fair
division of bandwidth among a set of users (see, e.g., [1]). Also note that this
mechanism could not have achieved 1-fairness (in conjunction with no deficit) if it
had not assigned the task to the agent with the lowest cost. We will show a general
result that we get economic efficiency ‘‘for free’’; that is, given our other desiderata,
we can assume without loss of generality that it is satisfied.

However, this protocol has a crucial flaw: the assumption that each agent will
truthfully reveal its cost is obviously invalid, because the agent who submits the
lowest cost has an incentive to inflate its declared cost to an amount just below the
second lowest declared cost. By increasing v̂½1� in this way, this agent would increase

its payment from the center.
This example illustrates why the center must resort to incentive engineering of the

sort encountered in mechanism design. Indeed, the reader familiar with mechanism
design ( for an introduction see [6]) might be tempted to view fair imposition as
already addressed by that literature. However, the technical differences are
substantive, and the solutions called for are different as a result. Although we start
the formal treatment only in the next section, for such readers let us make the
following technical comment: in the setting of fair imposition we retain the
requirements of incentive compatibility, no deficit, and economic efficiency, jettison
the requirement of individual rationality, and add a new requirement of fairness.

Although we feel that the setting as discussed is natural and important, for the
same class of expert readers we should also mention an alternative interpretation of
our framework and results. This is in the more standard context of auctions, where
the mechanism designer wishes to not only maximize social welfare, but to also share
the surplus among the agents as evenly as possible via side payments.2 We will
discuss this interpretation only briefly, and in two places—after the technical
exposition, and in the conclusions section.

The rest of the paper is organized as follows. In Section 2 we formally define the
single-task fair imposition setting as a mechanism design problem (including the
alternative interpretation of our setting in the context of an auction). Section 3
presents our basic results concerning the feasibility of fair allocation: when no deficit
is a strict requirement, we prove that we cannot achieve 2-fairness (and thus also not
1-fairness) and present a mechanism that achieves 3-fairness (and thus k-fairness for
k43 as well). An inequity of the mechanism used for this possibility result, in which
one agent pays more than other agents despite having a lower cost, leads into a
discussion and an impossibility result concerning our second type of fairness—
avoiding what we will call a competence penalty. We also give a mechanism that
achieves 1-fairness while incurring a minimal deficit. The techniques and results
presented for the single task case can be generalized to multiple tasks. We
demonstrate this possibility in Section 4 by extending the setting to two (possibly
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interacting) tasks and providing similar mechanisms and impossibility results.
Concluding remarks are given in Section 5.

Note that, for purposes of readability, full proofs are postponed to the appendix
and replaced in the text with proof sketches.

2. Setting

We construct the fair imposition setting for the single task case within the basic
mechanism design framework. While most of our criteria are consistent with those of
mechanism design, the novelty of our setting lies in our new goal of k-fairness.

2.1. The mechanism design problem

There exists a single task, a center, and a set of agents N ¼ f1; 2;y; ng who can
accomplish the task. Each agent i has a privately known type viARþ; which
represents its non-negative cost to execute the task. The center assigns the task to an
agent and collects a payment (which can be negative) from each agent through the
use of a mechanism G ¼ /B; f ð
ÞS:

The set of possible strategies for each agent i is defined by B ¼ fbi j bi : Rþ-Rþg:
A strategy bi for agent i maps each possible type to a declared type, biðviÞ; which will
also be referred to as v̂i (or as vi if v̂i ¼ vi). By restricting the space of messages for an
agent to declared types, we are only considering direct mechanisms.

The function f : Rn
þ-O takes as input a declared type from each agent and

returns an outcome in the set O: An outcome oAO is a pair of vectors ðg; tÞ; where
g ¼ ðg1;y; gnÞ and t ¼ ðt1;y; tnÞ: Each giAf0; 1g represents whether or not agent i

is assigned the task, and each tiAR is the amount that agent i must pay to the
center.3 For simplicity, we will use giðvÞ and tiðvÞ to represent the corresponding

terms in the outcome f ðvÞ: We also have the restriction that
Pn

i¼1 gi ¼ 1 in order to

capture the fact that the task can only be assigned to one agent. We will overload the
function f ð
Þ so that it can take as its arguments the declared types of n � 1 agents,
instead of the standard n: In this case, the mechanism is restricted so that gj ¼ 0 and

tj ¼ 0 for the agent j whose type was not given as an argument. While the set of

possible strategies B is constant for all mechanisms, f ð
Þ is the degree of freedom
used to satisfy the goals of the mechanism designer.

Each agent i has a linear utility function that depends on both the outcome and
the agent’s own type: uiððg; tÞ; viÞ ¼ �gi 
 vi � ti: We assume that all agents are
rational, in the sense that they are expected-utility maximizers.

In the sequel we will use the notational shorthand v ¼ ðv1; v2;y; vnÞ for the vector
of types of all agents. The vector of all types excluding that of agent i is v�i ¼
ðv1;y; vi�1; viþ1;y; vnÞ: We can then refer to v as ðvi; v�iÞ: For a vector v; we denote
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the jth lowest cost by v½ j�: In this way, we can use v�i½ j� to represent the jth lowest cost

among all agents other than agent i: Similarly, we will use b ¼ ðb1;y; bnÞ to
represent a vector of strategies for all agents. Then, bðvÞ would be the vector
ðb1ðv1Þ;y; bnðvnÞÞ: Without loss of generality, we will assume that the agents are
sorted in non-decreasing order of cost. That is, v1pv2p?pvn: This assumption is
solely for expositional purposes—the center has no knowledge of any such ordering.

2.2. Mechanism criteria

Four requirements that are often present in a mechanism-design setting are
incentive compatibility, no deficit, economic efficiency, and individual rationality.
We retain the first three as requirements. The fourth, individual rationality, which
requires that all agents always have non-negative utility for the outcome of the
mechanism, is often present when agents are assumed to have the option of not
participating in the mechanism. Since this assumption does not hold in our setting,
where the center can force the agents to both provide a desired service and make
payments to the center, we replace individual rationality with the notion of k-
fairness. In this section we formally define each of our criteria.

We say that incentive compatibility holds when each agent maximizes its utility by
declaring its true type, regardless of the declarations of all other agents.

Definition 1. A mechanism satisfies incentive compatibility (IC) if for all i and
vi; uið f ðvi; v̂�iÞ; viÞXuið f ðv0i; v̂�iÞ; viÞ holds for all v0i; and v̂�i:

Our second requirement, no deficit, requires that the center never lose money.

Definition 2. A mechanism satisfies no deficit (ND) if for all v̂ :
P

i tiðv̂ÞX0:

A third desideratum is economic efficiency, which simply requires that in every
equilibrium, our choice rule gð
Þ select the lowest cost agent as the service provider,
with ties broken arbitrarily.

Definition 3. A mechanism satisfies economic efficiency (EE) if for all v and all
equilibria b; there exists an agent j such that: gjðbðvÞÞ ¼ 1 and vj ¼ v½1�:

We now define the notion of fairness motivated in the introduction. In words, k-
fairness holds if in all equilibria the utility loss of each agent is bounded by kth
lowest cost among the agents, divided by the number of participating agents.

Definition 4. For any 1pkpn; a mechanism satisfies k-fairness if for all v and all

equilibria b; uið f ðbðvÞÞ; viÞX� v½k�
n

holds for each agent i:

Based on the preceding two definitions, we can see the need for incentive
compatibility, because both EE and k-fairness depend on the true type of the agents,
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despite the fact that the mechanism can only base g and t on the declared types. If IC
is satisfied, then we only have to consider the single equilibrium in which all agents
declare their type truthfully (that is, bðvÞ ¼ v). On the other hand, if IC is not
satisfied, then both EE and k-fairness, as defined here, are unreasonable goals for a
mechanism. Thus, in the sequel they both will only appear as goals of a mechanism
in conjunction with the goal of IC. While an indirect mechanism that merely induces
a dominant strategy equilibrium (with corresponding changes to the definition of EE
and k-fairness) would have sufficed, the Revelation Principle for Dominant
Strategies (see, for example, [6]) tells us that, without loss of generality, we can
restrict our space of mechanisms to those in which truthful revelation of types is a
dominant strategy.

2.3. Alternative interpretation

While in our motivating examples each vi would be positive, since it represents the
cost of completing the task, our formal setting does not restrict vi in any way. An
alternative interpretation of our formulation, which makes a more apparent
connection to the existing mechanism design literature, is as a private-value auction
for an indivisible good. In this case, each vi would be negative, representing the value
(or negative cost) of the good to the particular agent.

While the mechanisms we present would satisfy individual rationality when each vi

is negative, they would instead suffer from a free-rider problem, in which agents who
have no value for the good would have incentive to participate because they would
receive a positive payment from the center. Thus, our mechanisms apply best to
settings in which the bidders all have an equal, a priori claim to the object (e.g.,
siblings at a probate court), and thus we wish to make the auction as ‘‘fair’’ as
possible by having the winner compensate the losing bidders. In the conclusions
section we will revisit our results in the context of this interpretation.

3. Results

We begin by proving that the requirement of EE will never prevent us from finding
a mechanism that satisfies our other requirements. Then, we take ND as a firm
requirement and show that we cannot achieve 2-fairness, but can achieve 3-fairness.
The mechanism we construct for the possibility result has the property that an agent
with a lower cost than other agents is forced to pay more than these agents. We then
prove that this competence penalty is unavoidable. We conclude this section with a
mechanism that achieves 1-fairness, at the cost of a slight relaxation of our ND
requirement.

3.1. Restrictions to EE mechanisms

Before moving onto possibility and impossibility results, it will be helpful to
restrict the space of mechanisms we need to consider. Specifically, if our goal is to
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find a mechanism that satisfies IC, k-fairness and ND, then we can limit our search
to economically efficient mechanisms.

Lemma 1. If there exists a mechanism that satisfies IC, k-fairness and ND, then there

exists a mechanism that satisfies IC, k-fairness, ND, and EE.

Proof (Sketch). By construction. Start with any mechanism G (defined by gð
Þ
and tð
Þ) that satisfies IC, k-fairness and ND. Considering each possible v

separately, we transform G into a mechanism that maintains these properties and
also satisfies EE. Let j be the agent who is the service provider selected by G (that is,
gjðvÞ ¼ 1). If j ¼ 1; then G already satisfies EE and we are done for this particular v

(recall that we have ordered the agents by cost). Otherwise, we set g1ðvÞ ¼ 1 and
gjðvÞ ¼ 0: Then, to keep utility constant for all agents, we set t1ðvÞ’t1ðvÞ � v1

and tjðvÞ’tjðvÞ þ vj: Constant utility means that IC and k-fairness continue to hold,

and ND continues to hold because the center’s net revenue from the agents changes
by ðvj � v1ÞX0: &

3.2. An impossibility result for 2-fairness

When we require IC and ND, it is not surprising that 1-fairness is not achievable.

These three conditions together force the utility of each agent to be exactly � v½1�
n
: The

fact that v½1� is unknown makes this impossible to accomplish. However, based on

the success of the Groves mechanism (see [3]), one might expect that a
‘‘second-best’’ solution would be possible, allowing us to achieve 2-fairness.
However, this is not the case.

Theorem 1. There does not exist a mechanism that satisfies IC, 2-fairness, and ND, for

any nX2:

Proof (Sketch). We will use a proof by contradiction that works for
all nX2: Assume that a mechanism does exist for a given nX2 that satisfies IC, 2-
fairness, and ND. Because of IC, we can assume that all agents declare truthfully,
and Lemma 1 allows us to assume that a mechanism exists that also satisfies EE (that
is, g1ðvÞ ¼ 1).

A useful property (that we will use in later proof sketches) of mechanisms that
satisfy k-fairness, IC, and EE is that they must pay each agent an amount that would
satisfy k-fairness even if the agent’s true type were at the boundary of changing
which agent has the lowest cost. That is, agent 1 must be paid as if its type were v2;
and all other agents must be paid as if their type were v1: The reason that this
property holds is that IC demands that an agent’s payment be constant for all
declarations that do not change the service provider. Otherwise, there must be some
vector v in which this agent has an incentive to lie, because the only other factor in
the agent’s utility function (�gi 
 vi) does not change. Furthermore, the requirement
that the mechanism satisfy k-fairness places a bound on this payment. In the worst
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case ( from the center’s point of view), the service provider’s cost is equal to the
second-lowest cost (thus requiring the maximum amount of reimbursement for
executing the task). For each of the non-service provider, the worst case is that their
cost is equal to lowest cost (thus minimizing the kth lowest cost).

Applying this rule, it must be the case that the constant value that agent 1 pays is

bounded by t1ðv1; v�1Þp� n�1
n

v2: For the other agents (ia1), the bound is

tiðvi; v�iÞpv1=n; because v1 becomes the second lowest cost when this agent’s type
is considered to be v1:

We can then show the following upper bound on the net payments to the center:

t1ðvÞ þ
P

ia1 tiðvÞp� n�1
n

v2 þ ðn � 1Þ 
 v1

n
: Since v24v1 is possible, ND is not

satisfied, reaching a contradiction. &

Because k-fairness is strictly more difficult to satisfy than ðk � 1Þ-fairness, we have
the following corollary.

Corollary 1. There does not exist a mechanism that satisfies IC, 1-fairness, and ND,
for any nX2:

Note that we cannot show this result for n ¼ 1: A counterexample is a mechanism
that simply assigns the task to the single agent and pays it exactly zero.

3.3. A possibility result for 3-fairness

We now construct a mechanism to show that 3-fairness is the minimal level of
fairness that we can achieve in conjunction with ND and IC.

Mechanism Fair3:

� Each agent i submits a declared cost v̂i:
� An agent j with the lowest declared cost is selected (that is, v̂j ¼ v̂½1�).

� Assignment and payment rules are constructed as follows:

3 8i giðv̂Þ ¼
1 if i ¼ j;
0 otherwise;

�

3 8i tiðv̂Þ ¼
v̂�i½2�

n
� v̂½2� if i ¼ j;

v̂�i½2�
n

otherwise:

8<
:

In words, the service provider is reimbursed an amount ðv̂2Þ such that this agent is
the only one who can potentially make a profit from this ‘‘transaction’’. The rest of

the payment rule
v̂�i½2�

n

� �
for each agent i is equal to the second lowest declared cost

among all agents other than agent i:

Theorem 2. Mechanism Fair3 satisfies IC, 3-fairness, ND, and EE, for all nX3:
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Proof (Sketch). IC holds because the payments fit the Groves scheme [3]. EE then
follows from IC and the definition of Fair3. Each agent’s payment consists of an

‘‘offset payment’’
v̂�i½2�

n

� �
that does not depend on the agent’s type, plus the amount

by which the agent’s presence affects the costs incurred by the other agents. This
amount is �v̂2 for the service provider, because without the service provider the
agent with the second-lowest cost would be forced to complete the task, and zero for
all other agents, because their presence obviously does not change which agent is
selected as the service provider.

Given IC, the payments are: t1ðvÞ ¼ �v2 þ v3

n
for the service provider, t2ðvÞ ¼ v3

n
for

agent 2, and tiðvÞ ¼ v2

n
for all remaining agents ðiX3Þ: Thus, ND holds because:P

i tiðvÞ ¼ ð�v2 þ v3

n
Þ þ v3

n
þ
P

iX3
v2

n
X� v2 þ n

n
v2 ¼ 0:

Since IC holds, uið f ðvÞ; viÞ ¼ �tið f ðvÞ; viÞ holds for all non-service providers, and
u1ð f ðvÞ; v1Þ ¼ �v1 � t1ð f ðvÞ; v1Þ ¼ �v1 þ v2 � v3

n
X� v3

n
holds for the service provi-

der, we can conclude that 3-fairness holds. &

3.4. Competence penalty

A closer look at mechanism Fair3 reveals a disturbing inequity of payments
among the agents. Notice that the agent with the second lowest cost pays v3

n
; while the

other non-service providers pay v2

n
: The existence of inequity, in and of itself, is not

very troublesome, and could even be justified if the agents who pay less had declared
a lower cost, intuitively making themselves more ‘‘valuable’’ to the mechanism.
However, Fair3 produces the opposite effect. The agent who submitted the lowest
valuation among the non-service providers pays the most of this group, enduring
what we will call a competence penalty.

Definition 5. A mechanism enforces a competence penalty if there exists a vector v

and two distinct agents i and j such that giðvÞ ¼ gjðvÞ ¼ 0; viovj; and tiðvÞ4tjðvÞ:

Note that we have restricted the definition to only consider the non-service
providers. We could have included the service provider into this definition, but our
negative result below holds even for the current definition.

The competence penalty present in mechanism Fair3 turns out to be surprisingly
unavoidable. Not only is it impossible to construct a mechanism that satisfies
3-fairness and ND and is free of this type of inequity, we cannot even settle for
n-fairness.

Theorem 3. There does not exist a mechanism that satisfies IC, n-fairness, and ND,
and that does not enforce a competence penalty, for any fixed number of agents nX2:

Proof (Sketch). The proof of this result for n ¼ 2 follows directly from Theorem 1.
For any nX3; assume that a mechanism does exist that satisfies IC, n-fairness, and
ND, and that does not enforce a competence penalty. By Lemma 1, we can assume
that g1ðvÞ ¼ 1:
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The first step towards a contradiction is to prove by induction that for each agent i

such that 1oipn (i.e., the non-service providers), tiðvÞpvi�1=n must hold. Starting
with the base case of i ¼ n; we must show that tnðvÞpvn�1=n: Because of n-fairness,
tnðvÞpvn=n must hold. Since the center must pay agent n as if its type were v1 (using
the argument presented in the proof sketch of Theorem 1), this bound becomes
tnðvÞpvn�1=n; because the nth lowest cost becomes the vn�1 when agent n’s
declaration is changed to v1:

The inductive step for each i in the range 1oion proceeds similarly. By the
inductive assumption, tiþ1ðvÞpvi=n: We need to show that tiðvÞpvi�1=n: To avoid
a competence penalty, tiðvÞptiþ1ðvÞpvi=n: The bound tiðvÞpvi=n becomes
tiðvÞpvi�1=n by the same argument used for the base case.

We complete the proof by showing that these bounds prevent the mechanism from
satisfying n-fairness, which we show here for the case of n ¼ 3: Using the bounds we
just derived, the center can collect a maximum of v1

3
þ v2

3
from agents 2 and 3. As

shown in the proof sketch of Theorem 1, agent 1 must be paid n�1
n

v2 ¼ 2
3

v2: Since

v1ov2 is possible, ND is violated, a contradiction. &

Since ðk � 1Þ-fairness implies k-fairness, the following corollary trivially follows.

Corollary 2. There does not exist a mechanism that satisfies IC, k-fairness, and ND,
and does not enforce a competence penalty, for any 1pkon and any fixed number of

agents nX2:

3.5. A possibility result for 1-fairness

Given the fact that ND forces us to settle for 3-fairness, a natural question
is how much the center must pay in order to achieve 1-fairness. Indeed, while
in some situations the center can expect to pay nothing, in many others it
cannot demand as much. For example, in the military transportation domain
which motivated this work, the relationship between the government and the
airlines is not a simple one of dictator and subjects. If Fair3 were implemented,
one would expect airlines to balk at the fact that the government not only
receives the flight for free, but actually makes a profit. For these two reasons,
we present a protocol that sacrifices ND in a minimal way in order to achieve
1-fairness.

Mechanism BoundedFair1:

� Each agent i submits a declared cost v̂i:
� An agent j with the lowest declared cost is selected (that is, v̂j ¼ v̂½1�).

� Assignment and payment rules are constructed as follows:
3 8i giðv̂Þ ¼

1 if i ¼ j;
0 otherwise;

�

3

8i tiðv̂Þ ¼
v̂�i½1�

n
� v̂½2� if i ¼ j;

v̂�i½1�
n

otherwise:

8<
:
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To quantify the amount of budget deficit the center suffers, we introduce the
following definition.

Definition 6. A mechanism satisfies m-bounded deficit (m-BD) if for all v̂;P
i tiðv̂ÞX� m:

We can show that the budget deficit for mechanism BoundedFair1 is capped by
the difference in cost between the two lowest cost agents.

Theorem 4. Mechanism BoundedFair1 satisfies IC, 1-fairness, ðv2 � v1Þ-BD, and EE,
for any nX2:

Proof (Sketch). IC follows in the same way as it did for Fair3, because the only

change is in the ‘‘offset’’ component
v̂�i½1�

n

� �
of the payment function: it now uses the

lowest cost among the other agents rather than the second lowest cost. EE
follows directly from IC and the definition of the mechanism. 1-fairness
holds because of IC and the fact that the payment for the service provider is

t1ðvÞ ¼ �v2 þ v2

n
; causing its utility is then u1ð f ðvÞ; v1Þ ¼ �v1 � ð�v2 þ v2

n
Þ ¼ � v1

n
�

n�1
n

v1 þ n�1
n

v2X� v1

n
; while the utility for a non-service provider ði41Þ is the negative

of its transfer function: uið f ðvÞ; viÞ ¼ � v1

n
: Finally, to show (v2 � v1)-BD:P

i tiðvÞ ¼ ð�v2 þ v2

n
Þ þ

P
ia1

v1

n
¼ � n�1

n
v2 þ n�1

n
v1X� ðv2 � v1Þ: &

The power of this protocol lies in the fact that it only requires two proficient
agents in order to be reasonable for the center. One would expect v2 � v1{v1 to hold
for a set of airlines when the task is a flight between two major cities. For example,
suppose the two cheapest airlines could provide the flight for $750K and $800K.
While the government would be unwilling to pay the full $750K, a payment of
$800K � $750K ¼ $50K may be acceptable. An additional advantage of this
mechanism is that it does not enforce a competence penalty, because all non-service
providers now pay the same amount.

4. Multiple task setting

So far, our study has concentrated on the imposition of a single task on a set of
agents. If there are several independent tasks, then we can execute a separate
protocol for each task and apply the techniques and results we previously obtained.
However, it is often the case that the cost to complete a set of tasks is not simply the
sum of the costs of the individual tasks. For example, a carrier’s cost for a pair of
flights might be lower than the sum of the costs for the individual flights when the
destination of the first flight is the origin of the second. Alternatively, the cost for a
pair could be higher when both flights originate from the same city and the airline
only has one plane at this location. In such cases, the solution is not as simple, but we
can still achieve results comparable to those of the single task setting. In this section
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we consider the case of two interacting services, but this number is only chosen for
ease of exposition. The generalizations and techniques presented can be easily
applied to any number of interacting tasks.

We first need to extend our formulation. In the new setting, which we call the
Multiple Task Setting (MTS), there are two tasks, 1 and 2. We will use the variable s

to index an individual task and S for a set of tasks. The type of agent i is now
expanded to a function, vi : ff1g; f2g; f1; 2gg-Rþ; which maps each non-empty
subset of the two tasks to a non-negative cost. The possible interaction between the
services is reflected by the absence of a restriction that viðf1; 2gÞ ¼ viðf1gÞ þ viðf2gÞ:
We also extend the notation for the ranking of a valuation so that v½k�ðSÞ is the kth

lowest cost to complete the tasks in S:
Additionally, gi is expanded to a vector ðgi;1; gi;2Þ; where gi;sAf0; 1g denotes

whether or not task s is assigned to agent i: The restriction that each task is only

assigned once is now captured by:
Pn

i¼1 gi;s ¼ 1 for s ¼ 1; 2:

For convenience we will add some new notation. The cost of an assignment gi to
agent i is represented by the function ciðgi; viÞ ¼ gi;1ð1 � gi;2Þ 
 viðf1gÞ þ gi;2ð1 �
gi;1Þ 
 viðf2gÞ þ gi;1 
 gi;2 
 viðf1; 2gÞ; where the terms of the form ð1 � gi;sÞ are used to

avoid double counting the cost of completing a task. The utility function of agent i is
then: uiðo; viÞ ¼ �ciðgi; viÞ � ti: We will also use an aggregate cost term for the total
cost of all agents: cðg; vÞ ¼

P
i ciðgi; viÞ:

The definition of k-fairness can be extended in various ways for this setting. The
extension we choose reflects a minimal change from our original definition: the bound
on the loss of each agent for k-fairness in the current setting is the sum of the bounds
for k-fairness of the single task setting when both of the tasks considered separately.
This is an admittedly weak extension, and stronger extensions that consider the
potential sub-additivity of costs do not allow results as strong as the ones we will show.

Definition 7. A mechanism satisfies k-fairness in the Multiple Task Setting if for all b

and v; uið f ðbðvÞÞ; viÞX� v½k�ðf1gÞþv½k�ðf2gÞ
n

holds for each agent i:

Since the definitions of IC and ND carry over from the original setting, the only
other definition we need to update is that of EE.

Definition 8. A mechanism satisfies economic efficiency (EE) in the Multiple Task
Setting if for all b and v; cðgðbðvÞÞ; vÞpcðg0ðbðvÞÞ; vÞ holds for all g0ð
Þ:

In words, there can be no assignment rule g0ð
Þ that assigns tasks to agents in a way
that reduces the total cost to the agents. Define g�ð
Þ to be any function gð
Þ that
satisfies EE (with the tie-breaking rule being a degree of freedom).

4.1. MTS: an impossibility result for 2-fairness

It is easy to extend our infeasibility results for 2-fairness to the current setting. It is
always possible that task 2 is a ‘‘dummy task’’ that all agents can complete at no cost
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(that is, 8i viðf2gÞ ¼ 0 and viðf1; 2gÞ ¼ viðf1gÞ). In this case, the setting reduces to
our original one.

Proposition 5. There does not exist a mechanism that satisfies IC, 2-fairness, and ND,
for any nX2; in the Multiple Task Setting.

4.2. MTS: a possibility result for 3-fairness

To achieve 3-fairness with our other requirements, we again borrow ideas from the
Groves mechanism by aligning the interest of each individual agent with those of the
entire system, while charging each agent an offset payment that does not depend on
their own declared cost in order to satisfy ND. The ‘‘offset’’ payment is simply the
sum of the two offset payments that would exist if Fair3 were executed twice. The
rest of the payment rule for each agent i is the costs incurred by all other agents jai

from execution of tasks when agent i participates minus the amount that these costs
would be otherwise.

Mechanism Fair3b:

� Each agent i submits a declared cost v̂i:
� Assignment and payment rules are constructed as follows:

3 8i; s gi;sðv̂Þ ¼ g�
i;sðv̂Þ;

3 8i tiðv̂Þ ¼
v̂�i½2� ðf1gÞþv̂�i½2� ðf2gÞ

n
þ
P

jai cjðg�
j ðv̂Þ; v̂jÞ �

P
jai cjðg�

j ðv̂�iÞ; v̂jÞ:

We now show the result of executing mechanism Fair3b when the participating
agents are the three from Table 1.

If v̂ ¼ v; then task 1 is assigned to agent 3 and task 2 is assigned to agent 1 (that is,
the only two non-zero values for gð
Þ are g3;1ðvÞ ¼ 1 and g1;2ðvÞ ¼ 1). The transfer

functions are: t1ðvÞ ¼ 14þ16
3

þ 5 � ð5 þ 13Þ ¼ �3; t2ðvÞ ¼ 11þ16
3

þ ð5 þ 10Þ � ð5 þ
10Þ ¼ 9; and t3ðvÞ ¼ 14þ13

3
þ 10 � 20 ¼ �1:

If we modified the type of agent 2 so that v2ðf1; 2gÞ ¼ 14; then Fair3 would instead
assign both tasks to this agent (that is, g2;1ðvÞ ¼ 1 and g2;2ðvÞ ¼ 1). The transfer

functions would then be: t1ðvÞ ¼ 14þ16
3

þ 14 � 14 ¼ 10; t2ðvÞ ¼ 11þ16
3

þ 0 � ð5 þ 10Þ ¼
�6; and t3ðvÞ ¼ 14þ13

3
þ 14 � 14 ¼ 9:

Proposition 6. Mechanism Fair3b satisfies IC, 3-fairness, ND, and EE, for any nX2;
in the Multiple Task Setting.
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Table 1

Types of agents used in example of Mechanism Fair3b

i viðf1gÞ viðf2gÞ viðf1; 2gÞ

1 11 10 21

2 14 13 20

3 5 16 30
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We omit the proof because of its similarity to that of both Fair3 and the Groves
mechanism.

4.3. MTS: competence penalty

Given the similarity between mechanisms Fair3 and Fair3b, it is not surprising
that Fair3b also enforces a competence penalty on the agents. Even if we extend the
definition of competence penalty in a relatively weak manner, we can still show the
same impossibility result as we did for the single task setting.

Definition 9. A mechanism enforces a competence penalty in the Multiple Task
Setting if there exists a vector v and two distinct agents i and j such that the following
conditions all hold:

(1) gi;sðvÞ ¼ gj;sðvÞ ¼ 0; for s ¼ 1; 2;

(2) 8S viðSÞpvjðSÞ;
(3) (S viðSÞovjðSÞ;
(4) tiðvÞ4tjðvÞ:

Like the previous definition, this one only considers agents who were not assigned
a task. In words, a mechanism enforces a competence penalty if one non-service
provider pays more than another even though its type weakly ‘‘dominates’’ that of
the other agent.

We can then show the following impossibility result.

Proposition 7. There does not exist a mechanism that satisfies IC, n-fairness, and ND,
and that does not enforce a competence penalty, for any fixed number of agents nX2; in

the Multiple Task Setting.

The proof is omitted because of its similarity to that of the original impossibility result.
Intuitively, we can again use the possibility of one of the tasks being a ‘‘dummy task’’.

4.4. MTS: a possibility result for 1-fairness

Additionally, we can extend the mechanism BoundedFair1 in order to achieve
1-fairness while accepting a (relatively small) budget deficit.

Mechanism BoundedFair1b:

� Each agent i submits a declared cost v̂i:
� Assignment and payment rules are constructed as follows:

3 8i; s gi;sðv̂Þ ¼ g�
i;sðv̂Þ;

3 8i tiðv̂Þ ¼
v̂�i½1� ðf1gÞþv̂�i½1� ðf2gÞ

n
þ
P

jai cjðg�
j ðv̂Þ; v̂jÞ �

P
jai cjðg�

j ðv̂�iÞ; v̂jÞ:

The bound on the budget deficit for this mechanism is a simple extension of the
bound shown for the single task setting.
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Proposition 8. Mechanism BoundedFair1b satisfies IC, 1-fairness, EE, and

½v½2�ðf1gÞ � v½1�ðf1gÞ þ v½2�ðf2gÞ � v½1�ðf2gÞ�-BD, for any nX2; in the Multiple Task

Setting.

5. Conclusion

In this paper we investigated the addition of fairness as a goal in the mechanism-
design setting. The novelty of this work lies not in the consideration of fairness—
about which there is of course substantial literature in economics—but in its
consideration in the context of mechanism design. Despite the natural setting, to our
knowledge this is the first work to address it.

As we discuss in the paper, there is more than one notion of fairness that one
might consider. Our primary notion of fairness—k-fairness—places a cap on the
disutility of each agent and thus on the discrepancy between the disutilities of
different agents (our secondary notion of fairness—competence penalty—plays only
a secondary role). This notion of fairness is influenced by computer science
(specifically, the max–min criterion of bandwidth allocation), but should not appear
foreign to economists as well. For example, Hammond [4] shows that Rawls’
maximin rule can be used to satisfy Arrow’s conditions for a social welfare function
when they are modified to incorporate comparisons among the agents. Our paper
considers a related but different problem, because the selected social choice function
must be implemented in a setting where agent types are privately known. As was
shown in this paper, the self-interest of the agents limits the space of social choice
functions that we can implement.

Of course, other notions could be studied, and this is an avenue for future
research. Alternatively, we could move the goal of fairness from the set of goals of
the mechanism designer to the utility functions of the agents. Although this models
somewhat different situations than those that we have in mind and that were
illustrated in the introduction, it can be interesting as well. Each agent’s utility
function could then be a function of not only the outcome for this agent and its own
type, but also of the entire vector of declared types and the outcomes for all agents.
A body of research already exists that considers fairness in this manner, where it is
typically examined in the context of specific games such as the ultimatum or dictator
game. For example, Ref. [2] presents a model in which the utility of each agent
depends on equity, reciprocity ( for past cooperation or the failure to do so), and the
agent’s relative position among all agents. It would be interesting to approach this
setting from a mechanism-design perspective.

Returning to the alternative interpretation of our setting as an auction setting, our
results concern the fair division of the payment made by the winning bidder. In order
to achieve efficiency the winning bidder is charged the second-highest bid. As is well
known, this amount cannot then simply be redistributed amongst the agents, because
the agent with the second-highest bid would then have incentive to not bid truthfully
(specifically, to bid higher). Instead, the optimal redistribution rule is to pay each
agent the second-highest bid of the other agents, achieving 3-fairness. The meaning of
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the competence penalty in this setting is that the agent with the second-highest bid
receives a smaller payment than that of the agents who value the good less.

We concentrated on the single task setting, while also showing how the results can
be generalized to multiple tasks. As we move to a number of tasks much greater than
two, the computational cost of determining allocation and payment rules can
become prohibitive. Similar problems are faced in winner determination of
combinatorial auctions, which have attracted much interest in recent years; solutions
range from more efficient algorithms [5,9] to a shift to iterative mechanisms [7].
Exploring these directions in conjunction with the fairness considerations of this
paper presents another opportunity for future work.

Appendix

Proof of Lemma 1. Proof by construction. We describe a transformation which takes
any mechanism G (defined by f and its constitutive g and t) that satisfies IC, k-

fairness and ND, and returns a mechanism G0 (defined by f 0; g0; and t0), which
satisfies IC, k-fairness, ND, and EE.

We initialize G0 to be identical to G; and then make any necessary changes.
Because G satisfies IC, we know that v̂ ¼ v: For each v; apply the following

transformation. If g1ðvÞ ¼ 1; then G0 already satisfies EE and we are done for this
particular v: Otherwise, we need to alter g0 so that the task is instead assigned to
agent 1, and alter t0 to compensate for this reassignment. Call the service provider in
G agent j (that is, gjðvÞ ¼ 1). To secure EE, we set g0

1ðvÞ ¼ 1 and g0
jðvÞ ¼ 0: Then, set

t01ðvÞ ¼ t1ðvÞ � v1 and t0jðvÞ ¼ tjðvÞ þ vj: The changes for g0 and t0 imply that for all i

and v; the utility for agent i is equal in both mechanisms. That is, uið f ðvÞ; viÞ ¼
uið f 0ðvÞ; viÞ: We can then prove IC by contradiction. Assume that G0 is not IC; then,
there must exist some i; v; and v0i such that uið f 0ðv0i; v�iÞ; viÞ4uið f 0ðvi; v�iÞ; viÞ:
Because our transformation does not alter utilities, this inequality implies that
uið f ðv0i; v�iÞ; viÞ4uið f ðvi; v�iÞ; viÞ; contradicting the assumption that G satisfies

IC. The fact that utility remains constant implies that the k-fairness property

of G is preserved in G0: Finally, ND continues to hold because
P

i t0iðvÞ ¼P
i tiðvÞ � v1 þ vjX

P
i tiðvÞ: &

Proof of Theorem 1. We will use a proof by contradiction that works for all nX2:
Assume that a mechanism does exist for a given nX2 that satisfies IC, 2-fairness, and
ND. Consider a vector v in which v1ov2: We will show a lower bound on the
payment to the service provider, and then an upper bound on the payments made by
the other agents. These bounds will guarantee that ND cannot be satisfied.

Because of IC, we know that all agents other than agent 1 declare truthfully (that
is, v̂�1 ¼ v�1). Lemma 1 tells us that if a satisfying mechanism does exist, then there
must exist one that satisfies EE. Thus, we can assume that if agent 1 declares
truthfully, then it will be assigned the task (that is, g1ðv1; v�1Þ ¼ 1). We now show
that regardless of the particular value of v1; subject to the constraint that v1ov2;
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agent 1’s payment, t1ðv1; v�1Þ; must be constant. Otherwise, there must be two types
v01; v001ov2 such that t1ðv01; v�1Þ4t1ðv001; v�1Þ: Because agent 1’s utility function is

u1ð f ðv̂1; v�1Þ; v1Þ ¼ �v1 � t1ðv̂1; v�1Þ; this agent would have incentive to falsely
declare v001 when its true type is v01; violating IC.

Furthermore, we can show an upper bound of t1ðv1; v�1Þp� n�1
n

v2 on this

constant value. If this bound did not hold, then t1ðv1; v�1Þ ¼ � n�1
n

v2 þ e; for some

e40: Consider the possibility of v1 ¼ v2 � d; where doe: Then, u1ð f ðvÞ; v1Þ ¼
�ðv2 � dÞ � ð� n�1

n
v2 þ eÞ ¼ �v2=n þ d� eo� v2=n; violating 2-fairness.

Next, consider any other agent i; where ia1: Holding the declarations of the other
agents fixed at v̂�i ¼ v�i; it must be the case that tiðvi; v�iÞ is constant for all possible
types of agent i such that vi4v1: That is, as long as agent i’s type would not make it
the service in the case of a truthful declaration, it must always pay the same amount.
If this were not true, then there must exist two types v0i; v00i 4v1 such that

tiðv0i; v�iÞ4tiðv00i ; v�iÞ: Since uið f ðv̂i; v�iÞ; viÞ ¼ �tiðv̂i; v�iÞ; agent i would have

incentive to falsely declare v00i when its true type is v0i; violating IC. Next, we can

show an upper bound on this constant payment for all vi4v1: tiðvi; v�iÞpv1=n: If this
were not true, then tiðvi; v�iÞ ¼ ðv1 þ eÞ=n for some e40: Consider the possibility of
v2 ¼ v1 þ d; where doe: In this case, uið f ðvÞ; v1Þ ¼ �ðv1 þ eÞ=no� v2=n; violating
2-fairness.

Since the above argument holds for the n � 1 agents other than the service
provider (agent 1) when all agents declare their type truthfully, we have an upper

bound on the net payments to the center:
P

ia1 tiðvÞ þ t1ðvÞpðn � 1Þ 
 v1

n
� n�1

n
v2:

Since v24v1; ND is not satisfied, reaching a contradiction. &

Proof of Theorem 2. We start by proving IC. Consider any possible
declaration vector v̂: We need to show that any agent i whose declaration is
truthful (v̂i ¼ vi) could not increase its utility by making an alternate declaration,
holding v̂�i constant. Since we will need to talk about properties of the original
declaration vector v̂ throughout the proof, we will use v̂0i to denote this alternate

declaration.
There are three possible ‘‘classes’’ that a truthful agent i could fall into:

(1) vi ¼ v̂½1� and giðv̂Þ ¼ 1;

(2) vi ¼ v̂½2� and giðv̂Þ ¼ 0;

(3) vi4v̂½2� and giðv̂Þ ¼ 0:

In the first class, uið f ðvi; v̂�iÞ; viÞ ¼ �vi þ v̂½2� �
v̂½3�
n
: We know that

uið f ðvi; v̂�iÞ; viÞX� v̂½3�
n
; since giðvi; v̂�iÞ ¼ 1 implies that vipv̂½2�: Any alternate

declaration such that v̂i
0ov̂½2� would not change gð
Þ or tð
Þ; and thus would not

change agent i’s utility. For all v̂i
04v̂½2�; agent i’s utility is uið f ðv̂i

0; v̂�iÞ; viÞ ¼ � v̂½3�
n
;

because it is never chosen as the service provider. The final possibility of v̂i
0 ¼ v̂½2� is

covered by one of the previous two cases, depending on how the tie is broken. Thus,
there does not exist a v̂i

0 such that uið f ðv̂i
0; v̂�iÞ; viÞ4uið f ðvi; v̂�iÞ; viÞ:
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In the second class, uið f ðvi; v̂�iÞ; viÞ ¼ � v̂½3�
n
: If v̂i

0ov̂1; then uið f ðv̂i
0; v̂�iÞ; viÞ ¼

�vi þ v̂½1� �
v̂½3�
n
; because agent i becomes the service provider and v̂½1� becomes the

second highest declaration. In this case we know that uið f ðv̂i
0; v̂�iÞ; viÞo� v̂½3�

n
; since

giðvi; v̂�iÞ ¼ 0 implies that vi4v̂½1�: Alternatively, if v̂i
04v̂½1�; then uið f ðv̂i

0; v̂�iÞ; viÞ ¼
� v̂½3�

n
: The case of v̂i

0 ¼ v̂½1� is covered by one of the previous two cases, depending on

how the tie is broken. Thus, for all v̂i
0: uið f ðv̂i

0; v̂�iÞ; viÞpuið f ðvi; v̂�iÞ; viÞ:
IC in the third class is shown exactly the same way as it was in the second class.

The only difference is that
v̂½3�
n

is replaced by
v̂½2�
n

in uið
Þ to reflect the change in the

second lowest declaration of the other agents.
We now show that the remaining requirements are also satisfied. EE follows

directly from IC and the definition of Fair3. Substituting v for v̂ in equations we

derived during the proof of IC, we have uið f ðvÞ; viÞX� v½3�
n

for an agent in class 1,

uið f ðvÞ; viÞ ¼ � v½3�
n

for an agent in class 2, and uið f ðvÞ; viÞ ¼ � v½2�
n

for an agent in

class 3, proving 3-fairness. Finally, for ND:X
i

tiðvÞ ¼ t1ðvÞ þ t2ðvÞ þ
X
iX3

tiðvÞ

¼ �v½2� þ
v½3�
n

� �
þ

v½3�
n

þ
X
iX3

v½2�
n

X � v½2� þ
n

n
v½2�

X 0: &

Proof of Theorem 3. The proof of this result for n ¼ 2 follows directly from Theorem
1. We will prove by contradiction that it holds for all nX3 using an argument that
does not depend on the specific n chosen. Assume that a mechanism does exist for a
given nX3 that satisfies IC, n-fairness, and ND, and does not enforce a competence
penalty. Consider the possibility that v1ov2 holds in the vector v of true types, and
that all agents declare truthfully. By Lemma 1, we can assume that g1ðvÞ ¼ 1: (Recall
that we have assumed an ordering on the agents from ease of exposition.)

The first step is to prove by induction that for each agent i such that 1oipn

(i.e., the non-service providers), tiðvÞpvi�1=n must hold. Starting with the
base case of i ¼ n; we must show that tnðvÞpvn�1=n: Because of n-fairness,
tnðvÞpvn=n; since unð f ðvÞ; vnÞ ¼ �tnðvÞ: IC requires the mechanism to keep
tnðv̂n; v�nÞ constant for all declarations of agent n subject to the constraint that
v̂n4vn�1: Otherwise, there must exist two types v0n; v00n4vn�1 such that

tnðv0n; v�nÞ4tnðv00n; v�nÞ: IC would then be violated because agent n has incentive to

falsely declare v00n when its true type is v0n: Next, we can show the desired upper bound

on this constant payment for all v̂n4vn�1: tnðv̂n; v�nÞpvn�1=n: If this were not true,
then tnðv̂n; v�nÞ ¼ ðvn�1 þ eÞ=n for some e40: Consider the possibility of
vn ¼ vn�1 þ d; where doe: In this case, tnðvÞ4vn=n; contradicting a bound we
derived above. Therefore, the base case holds.
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We now prove the inductive step for each i in the range 1oion: By the inductive
assumption, tiþ1ðvÞpvi=n: We must show that tiðvÞpvi�1=n: To avoid a competence

penalty, tiðvÞptiþ1ðvÞpvi=n: Furthermore, tiðv̂i; v�iÞ must be constant for all v̂i4vi�1

by the same incentive compatibility argument used above, because such a declaration
cannot change the service provider for any i41: We can then show an upper bound
of tiðv̂i; v�iÞpvi�1=n; also by a similar argument as above. Thus, the inductive step
holds, and we can conclude that for each agent i such that 1oipn; tiðvÞpvi�1=n:

The second step is to show that these bounds prevent the mechanism from
satisfying n-fairness. To do this, we use a possible instance of v that can be applied to

any value of nX3: Consider the case in which v1 ¼ 0; and for all i41; vi ¼ n2 þ i:
Also, let v be the declared types of the agents. Since this v satisfies the constraint of
v1ov2; the bounds we just derived hold. Thus, the net payment from the non-service
providers to the center is as follows:

Xn

i¼2

tiðvÞp
Xn

i¼2

vi�1=n

p 0 þ
Xn�1

i¼2

ðn2 þ iÞ=n

o
n2ðn � 2Þ þ ðn � 1ÞðnÞ=2

n

¼ n2 � 1:5n � 0:5:

Because of ND, we also have a bound on the payment from the center to the service

provider: �t1ðvÞp
Pn

i¼2 tiðvÞon2 � 1:5n � 0:5: We also know that �t1ðv̂1; v�1Þ must

be constant for all v̂1ov2; by the same incentive compatibility used above. Thus, it

must be the case that �t1ðv01; v�1Þ ¼ �t1ðvÞon2 � 1:5n � 0:5; when the declared type

of agent 1 is: v01 ¼ n2 þ 1: However, it is possible that v01 is also the true type of agent

1. In this case, agent 1’s utility is too large to satisfy n-fairness.

u1ð f ðv01; v�1Þ; v01Þ ¼ � t1ðv01; v�1Þ � v01

¼ � t1ðv1; v�1Þ � v01

o n2 � 1:5n � 0:5 � ðn2 þ 1Þ

¼ � 1:5n � 1:5

¼ � 1:5n2 þ 1:5n

n

o � n2 þ n

n

¼ � vn

n
:

Since n-fairness is violated, we have reached a contradiction, and the proof is
complete. &
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Proof of Theorem 4. The proof of IC is almost identical to that of mechanism Fair3.

The only difference between the two mechanisms is that the ‘‘offset’’ payment
v̂�i½1�

n

� �
is changed to use the lowest declaration among all other agents instead of the second
lowest declaration from this set. Since the agent’s own type still does not affect this
term, IC follows in an identical fashion.

EE then follows directly from IC and the definition of BoundedFair1. For 1-
fairness, we examine the two classes that an agent can fall into: the service provider,

or a non-service provider. For the service provider, uið f ðvÞ; viÞ ¼ �vi þ v½2� �
v½2�
n

(because v̂ ¼ v), which can be re-written as: uið f ðvÞ; viÞ ¼ � vi

n
� n�1

n
vi þ n�1

n
v½2�:

Because this agent is the service provider and EE is satisfied, we know that vi ¼
v½1�pv½2� and thus that uið f ðvÞ; viÞX� v½1�

n
: For a non-service provider, uið f ðvÞ; viÞ ¼

� v½1�
n
: These two facts, combined with IC, imply 1-fairness.

Finally, to show (v½2� � v½1�)-BD, we carry out the following calculations.

X
i

tiðvÞ ¼ t1ðvÞ þ
X
ia1

tiðvÞ

¼ � v½2� þ
v½2�
n

þ
X
ia1

v½1�
n

¼ � n � 1

n
v½2� þ

n � 1

n
v½1�

X � ðv½2� � v½1�Þ: &
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