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Abstract 

This paper investigates the foundation of rnaxipnin, 
one of the central qualitative decision criteria, using 
the approach taken by Savage (Savage 1972) to inves- 
tigate the foundation and rationality of classical de- 
cision theory. This approach asks “which behaviors 
could result from the use of a particular decision pro- 
cedure?” The answer to this question provides two 
important insights: (1) under what conditions can we 
employ a particular agent model, and (2) how ratio- 
nal is a particular decision procedure. Our main re- 
sult is a constructive representation theorem in the 
spirit of Savage’s result for expected utility maximiza- 
tion, which uses two choice axioms to characterize the 
maxapnin criterion. These axioms characterize agent 
behaviors that can be modeled compactly using the 
maxcirnin model, and, with some reservations, indicate 
that rnaxionin is a reasonable decision criterion. 

Introduction 
Decision theory plays an important role in fields such 
as statistics, economics, game-theory, and industrial 
engineering. More recently, the realization that deci- 
sion making is a central task of artificial agents has led 
to much interest in this area within the artificial intel- 
ligence research community. Some of the more recent 
work on decision theory in AI concentrates on qual- 
itative decision making tools. For example, Boutilier 
(Boutilier 1994) and Tan and Pearl (Tan & Pearl 1994) 
examine semantics and specification tools for qualita- 
tive decision makers, while Darwiche and Goldszmidt 
(Darwiche & Goldszmidt 1994) experiment with qual- 
itative probabilistic reasoning in diagnostics. 

There are two major reasons for this interest in qual- 
itative tools. One reason is computational efficiency: 
one hopes that qualitative tools, because of their sim- 
plicity, will lead to faster algorithms. Another rea- 
son is a simpler knowledge acquisition process: often, 
qualitative information is easier to obtain from experts 
and layman. However, while there is abundant work 
on the foundations of quantitative approaches to deci- 
sion making, usually based on the principle of expected 
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utility maximization (e.g.,(Savage 1972; Anscombe & 
Aumann 1963; Blum, Brandenburger, & Dekel 1991; 
Kreps 1988; Hart, Modica, & Schmeidler 1994))) we 
are aware of very little work on the foundations of qual- 
itative methods.’ 

Work on the foundations of decision theory is moti- 
vated by two major applications: agent modeling and 
decision making. Agent modeling is often the main 
concern of economists and game-theorists; they ask: 
under what assumptions can we model an agent as 
if it were using a particular decision procedure? In 
artificial intelligence, we share this concern in vari- 
ous areas, most notably in multi-agent systems, where 
agents must represent and reason about other agents. 
Decision making is often the main concern of statisti- 
cians, decision analysts, and engineers. They ask: how 
should we model our state of information? And how 
should we choose our actions? The relevance of this 
question to AI researchers is obvious. The foundational 
approach helps answer these questions by describing 
the basic principles that underlie various decision pro- 
cedures. 

One of the most important foundational results in 
the area of classical decision theory is Savage’s theorem 
(Savage 1972), d escribed by Kreps (Kreps 1988) as the 
“crowning achievement” of choice theory. Savage pro- 
vides a number of conditions on an agent’s preference 
among actions. Under these conditions, the agent’s 
choices can be described as stemming from the use 
of probabilities to describe her state of information, 
utilities to describe her preferences over action out- 
comes, and the use of expected utility maximization to 
choose her actions. For example, one of Savage’s pos- 
tulates, the sure-thing principle, roughly states that: if 

‘An interesting related work is the axiomatic approach 
taken by Dubois and Prade (Dubois & Prade 1995), which 
proves the existence of a utility function representing a pref- 
erence ordering among possibility distributions. Many ax- 
iom systems that are weaker than Savage’s appear in (Fish- 
burn 1988), but we are not aware of any that resemble ours. 
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an agent prefers action a over b given that the possible 
worlds are sr and &, and she prefers a over b when 
the possible worlds are ss and ~4, then she should still 
prefer a over b when the possible worlds are ~1, ~2, ss 
and ~4. Economists use Savage’s results to understand 
the assumptions under which they can use probabilities 
and utilities as the basis for agent models; decision the- 
orists rely on the intuitiveness of Savage’s postulates 
to justify the use of the expected utility maximization 
principle. 

Our aim in this paper is to initiate similar work on 
the foundations of qualitative decision making. Given 
that we have compelling practical reasons to investi- 
gate such tools, we would like to have as sound an 
understanding of the adequacy of qualitative decision 
tools as we do of the classical, quantitative tools; both 
for the purpose of decision making and agent modeling. 
Our main contribution is a representation theorem for 
the maximin decision criterion.2 Using a setting sim- 
ilar to that of Savage, we provide two conditions on 
an agent’s choice over actions under which it can be 
represented as a qualitative decision maker that uses 
maximin to make its choices. One of these conditions 
is similar to Savage’s sure thing principle. It says that 
if an agent prefers action a over b when the possible 
worlds are sr and s2 and she prefers a over b when 
her possible worlds are s2 and sa, then she still prefers 
a over b when the possible worlds are si, s2 and ~3. 
The other condition is more technical, and we defer its 
presentation to Section 4. 

Beyond qualitative decision theory, the results pre- 
sented in this paper have another interesting interpre- 
tation: There are different ways in which we can en- 
code an agent’s behavior (or program). One simple 
manner is as an explicit mapping from the agent’s local 
state to actions. Th.is is often highly inefficient in terms 
of space. Alternative, implicit, representations are of- 
ten used if we desire to cut down on program storage 
or transmission costs. Probabilities and utilities and 
their qualitative counterparts can be used to obtain a 
compact, albeit implicit, representation of programs. 
Our (constructive) results characterize a class of agent 
programs that can be represented in O(n log n) space, 
where n is the number of states of the world. This is 
to be contrasted with a possibly exponential explicit 
representation. 

In Section 2 we define a model of a situated agent 
and two alternative representations for its program or 
behavior. One is a simple policy that maps an agent’s 

2 (Hart, Modica, & Schmeidler 1994) presents an axiom- 
atization for maximin in the context of 2-person zero-sum 
games. However, their axiomatization is probabilistic, and 
does not fit the framework of qualitative decision theory. 
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state of information to actions, while the other rep- 
resents the agent’s program (or behavior) implicitly 
using the maximin decision criterion. Our aim is to 
present conditions under which policies can be repre- 
sented implicitly using the maximin criterion. This 
will be carried out in two steps: In Section 3 we dis- 
cuss the case of an agent which has to decide among 
two actions in various states, while in Section 4 we con- 
sider the case where the agent has any finite number of 
actions to choose from. Proofs of these results, which 
are constructive, are omitted due to space constraints. 
Section 5 concludes with a discussion of some issues 
raised by our results and a short summary. 

The Basic Model 
In this section, we define a fairly standard agent model 
and the concept of a policy, which describes the agent’s 
behavior. Then, we suggest one manner for implicitly 
representing (some) policies using the concept of utility 
and the decision criterion maximin. 

Definition 1 States is a finite set of possible states 
of the world. An agent is a pair of sets, 
(LocalStates, Actions), which are called, respectively, 
the agent’s set of local states and actions. 

PW : LocalStates + Zstates \ 8 is the function de- 
scribing the set of world states consistent with every 
local state. PW satisfies the following conditions: (1) 
PW(1) = PW(1’) iff 1 = I’, and (2) For each subset S 
of States, there exists some 1 E LocalStates such that 
PW(Z) = s. 

Each state in the set States describes one possi- 
ble state of the world, or the agent’s environment. 
This description does not tell us about the inter- 
nal state of the agent (e.g., the content of its reg- 
isters). These internal states are described by ele- 
ments of the set of local states. Intuitively, local 
states correspond to the agent’s possible states of in- 
formation, or its knowledge (see (Fagin et al. 1995; 
Rosenschein 1985)) .’ I n addition to a set of possible lo- 
cal states, the agent has a set Actions of actions. One 
can view these actions as the basic control signals the 
agent can send to its actuators. 

With every local state I E LocalStates we associate 
a subset PW(Z) of States, understood as the possible 
states of the world consistent with the agent’s infor- 
mation at 1. That is, s E PW(Z) iff the agent can be in 
local state I when the current state of the world is s. 
In fact, in this paper we identify I with PW(Z) and use 
both interchangeably. Hence, we require that I = E’ iff 
p W) = PW(Z’) and that for every S C States there 
exists some I E LocalStates such that PW(Z) = S. 

Like other popular models of decision making (e.g., 
(Savage 1972; Anscombe & Aumann 1963)), our model 



considers one-shot decision making. The agent starts 
at some initial state of information and chooses one of 
its possible actions based on its current state of infor- 
mation (i.e., its local state); this function is called the 
agent’s poEicy (see also protocol (Fagin et al. 1995) and 
strategy (Lute & Raiffa 1957)). This policy maps each 
state of information of the agent into an action. 

Definition 2 A 
policy for agent (LocalStates,Actions) is a function 
P : LocalStates + Actions. 

A naive description of the policy as an explicit 
mapping between local states and actions is exponen- 
tially large in the number of possible worlds because 
lLocaZStatesl = 21Statesl. Requiring a designer to sup- 
ply this mapping explicitly is unrealistic. Hence, a 
method for implicitly specifying policies is desirable. 
In particular, we would like a specification method that 
helps us judge the quality of a policy. Classical deci- 
sion theory provides one such manner: the policy is 
implicitly specified using a probability assignment pr 
over the set States and a real valued utility function u 
over a set 0 of action outcomes. The action to be per- 
formed at local state I is obtained using the principle 
of expected utility maximization: 

argmaxaEActiotas{ c p(s) . u@(s))} 

sEPW(I) 

where a(s) is the outcome of action a when the state 
of the world is s. We wish to present a different, more 
qualitative representation. We will not use a prob- 
ability function, and our utility function u(v) .) takes 
both the state of the world and the action as its argu- 
ments and returns some value in a totally pre-ordered 
set. (Notice the use of qualitative, rather than quan- 
titative representation of utilities.) For convenience, 
we will use integers to denote the relative positions of 
elements within this set. In our representation, the 
agent’s action in a local state 1 is defined as: 

That is, the agent takes the action whose worst-case 
utility is maximal. Maximin is a qualitative decision 
criterion that seems-w4l;tailored to risk-averse agents. 

Definition 3 A policy P has a maximin represen- 
tation if there exists a utility function on States x 
Actions such that for every 1 E LocalStates 

p(l) = a??maxaEActioras ( sEgg4a~ 4)). 

That is, P has a maximin representation if for every 
local state I, an agent with this utility function that 

makes her decision by applying maximin to the utilities 
of actions in PW(Z), would choose the action P(Z). 

Given an arbitrary agent and a policy P adopted 
by the agent, it is unclear whether this policy has 
a maximin representation. It is the goal of this pa- 
per to characterize the class of policies that have 
this representation. From this result, we can learn 
about the conditions under which we can use the 
maximin representation to model agents and under- 
stand the rationality of using maximin as a deci- 
sion criterion. Unlike the exponential naive repre- 
sentation of policies, the maximin representation re- 
quires only O(ZogM - IStates . IActions!) space, where 
M = maXa,a’EActions;s,s’EStates IU(a, S) - u(a’, s’) 1. 

epresenting Binary Decisions 
This section presents two representation theorems for 
maximin for agents with two possible actions. We 
start by describing a basic property of maximin rep- 
resentable policies. 

Definition 4 We say that a policy P is closed under 
union if P(U) = P(W) implies P(U U W) = P(U), 
where U, W C States. 

That is, suppose that the agent would take the same 
action a when its local state is I or I’, and let i be 
the local state in which the agent considers possible 
all worlds that are possible in I and in I’. That is 
PW(i) = PW(Z) U PW(Z’). If the agent’s policy is 
closed under unions, it would choose the action a at i. 

For example, suppose that our agent is instructed 
to bring coffee when it knows that the weather is cold 
or warm and when it knows that the weather is warm 
or hot. If all the agent knows is that the weather is 
cold, warm, or hot, it should still bring coffee if its pol- 
icy is closed under unions. This sounds perfectly rea- 
sonable. Consider another example: Alex likes Swiss 
chocolate, but dislikes all other chocolates. He finds an 
unmarked chocolate bar and must decide whether or 
not he should eat it. His policy is such that, if he knows 
that this chocolate is Swiss or American, he will eat it; 
if he knows that this bar is Swiss or French, he will 
eat it as well. If Alex’s policy is closed under unions, 
he will eat this bar even if he knows it must be Swiss, 
French, or American. 

Our first representation theorem for maximin shows 
that policies containing two possible actions that are 
closed under unions are representable using a utility 
function defined on Actions and States. 

Theorem 1 Let P be a policy assigning only one of 
two possible actions at each local state, and assume 
that P is closed under union. Then, P is maximin 
representable. 
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Notice that this corresponds to a completeness 
claim, while soundness, which implies that the above 
conditions hold for maximin, is easily verified. 

The following example illustrates our result. 

Example I Consider the following policy (or precon- 
dition for wearing a sweater) in which Y stands for 
“wear a sweater” and N stands for “do not wear a 

sweater”. 

(cold} ( } ok ( hot} {c,o} (c,h} (o,h} ( c,o,h 
Y N N Y N N N 

It is easy to verify that this policy is closed under 
unions. For example, the sweater is not worn when 
the weather is ok or when the weather is either hot or 
cold, hence it is not worn when there is no information 
at all, i.e., the weather is either cold, ok, or hot. 

Using the proof of Theorem 1 we construct the fol- 
lowing utility function representing the policy above: 

A slight generalization of this theorem allows for 
policies in which the agent is indifferent between the 
two available choices. In the two action case discussed 
here, we capture such indifference by assigning both 
actions at a local state, e.g., P(1) = {a, a’}. Hence 
we treat the policy as assigning sets of actions rather 
than actions. We refer to such policies as set-valued 
policies, or s-policies. Closure under union is defined 
in this context as follows: 

Definition 5 An s-policy P is closed under unions if 
for every pair of local states U, W c States, P(UU W) 
is either P(W), P(U), or P(U) UP(W). 

We require a number of additional definitions before 
we can proceed with the representation theorem for s- 
policies. First, we define two binary relationships on 
subsets of States: 

Definition 6 U >p W, where U, W C States, if 
P(U u W) = P(U) and P(U) # P(W). U =p W, 
where U, W c States, if P(U),P(W) and P(U U W) 
are all different. 

That is U >p W tells us that the preferred action in U 
is preferred in U U W. U =p W is basically equivalent 
to U #p W and W #p U. Next, we define a condition 
on these relations which closely resembles transitivity. 

Definition 7 We say that >p is transitive-like if 
whenever U1*1 . . ‘*k-l Uk, where *j E (>p, =p), and 
Wl) #P(h), we have that Ul * Uk. Here, * is >p 
if any of the *i are >p, and it is =p otherwise. 
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Finally, we say that P respects domination if the 
action assigned to the union of a number of sets does 
not depend on those sets that are dominated by other 
sets w.r.t. >p. 

Definition 8 We say that P respects domination if 
for all W, U, V E States we have that W >p U implies 
that P(W U U U V) = P(W U V). 

We have the following representation theorem for s- 
policies: 

Theorem 2 Let P be an s-policy for an agent 
(LocalStates, Actions) such that (I) (Actions1 = 
(a, a’), (2) P is closed under unions, (2) P respects 
domination, (4) >p is transitive-like. Then, P is max- 
imin representable. 

A General Existence Theorem 
In the previous section we provided representation the- 
orems for a class of policies in which the agent chooses 
between two actions. We would like to generalize these 
results to represent choice among an arbitrary set of ac- 
tions. We will assume that, rather than a single most 
preferred action, the agent has a total order over the 
set of actions associated with each local state. This 
total order can be understood as telling us what the 
agent would do should its first choice became unavail- 
able. The corresponding representation using maximin 
will tell us not only which action is most preferred, but 
also, which action is preferred to which. 

efinition 9 A 
generalized policy for an agent (LocalStates,Actions) 
is a function P : LocalStates + TO(Actions), where 
TO(Actions) is the set of total orders on Actions. 

Generalized policy P is maximin representable if 
there exists a utility function u(., .) on Statesx Actions 
such that a is preferred to a’ in local state 1 according 
to P(1) ifl 

for every pair of actions a, a’ E Actions and for every 
local state 1 E LocalStates. 

The generalization of closure under unions to gener- 
alized policies is not a sufficient condition on policies 
for obtaining a maximin representation. The following 
definition introduces an additional property needed: 

Definition 10 Let {+ w 1 W C_ S}, be a set of total 
orders over Act ions. aven s s’ E States and a, a’ E 
Actions , we write (~7) < ( > s’, a’) if (1) a’ ss a, 
a Fsl a’, and a’ +{s,s~) a; or (2) s = s’ and 
a’ gs a. We say that < is transitive-like if whenever 
(~1, al) < (~2, a2) < . . . < (sk, ak) and either (1) 



s 27’ 

zkid 

a 1 3 
a’ 3 2 

Figure 1: (s, a) < (s’, a’) 

ak s-s1 al and al +-sk al, or (2) s1 = Sk, then 
(sl, al) < (Sk, ak) . 

The left table in Figure 1 helps us clarify this def- 
inition. In it, we depict the conditions under which 
(s, a) < (s’, a’) holds. Th ere are three columns in this 
table, each showing the agent’s preference relation over 
actions in different local states. The possible worlds in 
these local states are s, s’, and {s,s’}. In s the agent 
prefers a’ over a, in s’ it prefers a over a’, but when 
all the agent knows is that the world is either in state 
s or s’, it prefers a’ over a. Roughly, we can say that 
(s, a) < (s’, a’) if the agent dislikes taking action a in 
state s more than it dislikes taking action a’ in state 
S’. 

The following example illustrates the transitivity- 
like condition. 

Example 2 Suppose that there are three possible 
states of the world: snowing and cold, raining and 
cold, neither and warm. I prefer skiing to walking 
when it is snowing, but prefer walking to skiing when 
it is raining. However, when I am uncertain about 
whether it will rain or snow, I’d choose to walk. In 
this case (ski, rain) < (walk, snow). I prefer skiing to 
jogging when it is warm, and I prefer jogging to skiing 
when it is raining. However, I really dislike jogging 
when it is not cold, so I prefer skiing to jogging if I 
am uncertain whether it is warm or snowing. Hence 
(jog, warm) < (ski, rain). Suppose that, in addition, I 
prefer walking to jogging when it is warm, and I prefer 
jogging to walking when it snows. The transitivity-like 
condition implies that (jog, warm) < (walk, snow), 
and hence I’d prefer walking to jogging if I am un- 
certain whether it will be warm or it will snow. This 
seems quite plausible. 

Theorem 3 Let Actions be an arbitrary set of ac- 
tions, and let >w, for every W C S, be a total order 
over Actions such that 

1. if a sw a’ and a >v a’ then a Fwuv a’ j and 

2. < is transitive-like. 

Then, {>w 1 W E S} is maximin representable. 

Again, it is easy to see that a preference relation 
based on maximin will have the properties described in 
this theorem, and this result can be viewed as a sound 

and complete characterization of the maximin criterion 
for total orders. In addition, this theorem characterizes 
a class of policies that can be represented using O(n . 
log(n)) space in contrast with the exponentially large 
naive represent ation. 

Discussion 
Decision theory is clearly relevant to AI, and there is 
little doubt about the need for decision making tech- 
niques that are more designer friendly and have nice 
computational properties. Qualitative decision proce- 
dures could offer such an alternative, but the question 
is: how rational are they ? One method of addressing 
this question is experimentation, as in (Darwiche & 
Goldszmidt 1994). However, the prominent approach 
for understanding and justifying the rationality of deci- 
sion criteria has been the axiomatic approach. This ap- 
proach characterizes the properties of a decision crite- 
rion in a general, domain independent manner. Given 
a particular domain of application, we can assess the 
rationality of employing a particular decision criterion 
using its characteristic properties. Our work provides 
one of a few results within the axiomatic approach that 
deals with qualitative decision criteria and helps us un- 
derstand the inherent properties of maximin, assess the 
rationality of using maximin, and understand the con- 
ditions under which an arbitrary agent can be modeled 
as if it were a qualitative decision maker. 

In classical decision theory, the agent has both a util- 
ity function and a probability function. In our repre- 
sentation theorems, the emphasis has been on utilities 
rather than beliefs. The agent’s state of information is 
modeled by means of the set of worlds consistent with 
its current local state, PW(1). Most authors (e.g., (Fa- 
gin et al. 1995)) regard this set as representing the 
agent’s knowledge, rather than belief. However, the 
concept of belief can be incorporated into this model 
by imposing additional structure on the set States 
in the form of a ranking function. This model has 
been suggested by e.g., (Brafman & Tennenholtz 1994; 
Friedman & Halpern 1994; Lamarre & Shoham 1994). 
Given a ranking function r : States + N, we define 
the agent’s beliefs at local state 1 as: 

B(1) = {s E PW(1) Is’ E PW(Z) implies r(s) 5 r(s’)}. 

B(1) are often called the agent’s plausible states at the 
local state 1. We can modify maximin by applying it 
to the plausible states, instead of the possible states 
(see, e.g.,(Brafman & Tennenholtz 1994)). That is, at 
state 1 the agent chooses 

ar9maXaactions Q-$j) 4% 41. 
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A similar approach is taken in (Boutilier 1994; Tan & 
Pearl 1994)). 

Clearly, any behavior that is maximin representable 
can be represented using the ranked maximin repre- 
sentation suggested above. (We would use a ranking 
function that maps all states to the same integer). We 
can show that the converse is true as well. That is, if 
an agent can be represented as using ranked maximin 
it can also be represented as using the standard max- 
imin approach discussed in this paper; a formal proof 
is deferred to the full paper. Therefore, the ranked 
maximin representation is no more expressive than our 
standard maximin representation, i.e., it can capture 
the same set of behaviors. Hence, ranked maximin is 
not, a priori, a more rational decision criterion. 

Our work differs from most other foundational work 
in decision theory in its definition of the utility func- 
tion. We define utilities as a function of both the 
agent’s action and the state of the world. Savage, and 
many others, define the notion of an outcome, i.e., a 
description of the state of the world following the per- 
formance of an action. In these works, utilities are a 
function of outcomes. Savage defines actions as map- 
pings between states and outcomes, and it is possible 
to obtain the same outcome when two different actions 
are performed in two different states of the world. Our 
approach is motivated by the fact that, in practice, 
an agent chooses an action, not an outcome. That 
is, the only physically observable aspect of the agent’s 
behavior is its choice of action, e.g., the control sig- 
nal it sends to its actuators. The outcome of these 
actions is not directly chosen by the agent. Our rep- 
resentation is identical to the standard representation 
if it is assumed that the outcomes of different actions 
on different states are different. Moreover, using utility 
functions that depend on both the state and the action 
makes practical sense in our qualitative context: it is 
reasonable when the manner in which the outcome was 
received is important, e.g., the cost of an action, and 
it allows us to use the utility function to encode both 
the desirability of the action’s outcomes and the likeli- 
hood of the state in which it is obtained. Nevertheless, 
obtaining representation theorems for maximin in the 
more standard framework is an interesting challenge. 
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