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ABSTRACT
A mediator is a reliable entity, which can play on behalf of
agents in a given game. A mediator however can not enforce
the use of its services, and each agent is free to participate
in the game directly. In this paper we introduce a study of
mediators for games with incomplete information, and ap-
ply it to the context of position auctions, a central topic
in electronic commerce. VCG position auctions, which are
currently not used in practice, possess some nice theoret-
ical properties, such as the optimization of social surplus
and having dominant strategies. These properties may not
be satisfied by current position auctions and their variants.
We therefore concentrate on the search for mediators that
will allow to transform current position auctions into VCG
position auctions. We require that accepting the media-
tor services, and reporting honestly to the mediator, will
form an ex post equilibrium, which satisfies the following
rationality condition: an agent’s payoff can not be negative
regardless of the actions taken by the agents who did not
choose the mediator’s services, or by the agents who report
false types to the mediator. We prove the existence of such
desired mediators for the next-price (Google-like) position
auctions, as well as for a richer class of position auctions,
including all k-price position auctions, k > 1. For k=1, the
self-price position auction, we show that the existence of
such mediator depends on the tie breaking rule used in the
auction.
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1. INTRODUCTION
Consider an interaction in a multi-agent system, in which

every player holds some private information, which is called
the player’s type. For example, in an auction interaction
the type of a player is its valuation, or, in more complex
auctions, its valuation function. Every player has a set of
actions, and a strategy of a player is a function that maps
each of its possible types to an action. This interaction
is modeled as a game with incomplete information. This
game is called a Bayesian game, when a commonly known
probability measure on the profiles of types is added to the
system. Otherwise it is called a pre-Bayesian game. In this
paper we deal only with pre-Bayesian games. The leading
solution concept for pre-Bayesian games is the ex post equi-
librium: A profile of strategies, one for each player, such
that no player has a profitable deviation independently of
the types of the other players. Consider the following simple
example of a pre-Bayesian game, which possesses an ex post
equilibrium. The game is denoted by H.

a b
a 5, 2 3, 0
b 0, 0 4, 2

A

a b
a 2, 2 0, 0
b 3, 3 5, 2

B

At the game H there are two players. Both players can
choose among two actions: a and b. The column player,
player 2, has a private type, A or B (player 1 has only one
possible type). A strategy of player 1 is g1,where g1 = a or
g1 = b. A strategy of player 2 is a function g2 : {A, B} →
{a, b}.That is, player 2 has 4 strategies. In this game the
strategy profile (g1, g2) is an ex post equilibrium, where g1 =
b and g2(A) = b, g2(B) = a.

Unfortunately, pre-Bayesian games do not, in general, pos-
sess ex post equilibria, even if we allow mixed strategies. In
order to address this problem we suggest in this paper the
use of mediators. A mediator is a reliable entity that can
interact with the players and perform on their behalf actions
in a given game. However, a mediator can not enforce be-
havior. Indeed, an agent is free to participate in the game
without the help of the mediator. The mediator’s behav-
ior on behalf of the agents that give it the right of play is
pre-specified, and is conditioned on information the agents
would provide to the mediator. This notion is highly natu-
ral; in many systems there is some form of reliable party or
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administrator that can be used as a mediator. The simplest
form of a mediator discussed in the game theory literature
is captured by the notion of correlated equilibrium [1]. This
notion was generalized to communication equilibrium by [5,
15]. Another type of mediators is discussed in [13]. However,
in all these settings the mediator can not perform actions
on behalf of the agents that allow it to do so. Mediators
that can obtain the ”right of play” but can not enforce the
use of their services have been already defined and discussed
for games with complete information in [14].1 The topic of
mediators for games with complete information has been
further generalized and analyzed in [16]. In this paper we
introduce another use of mediators, in establishing behav-
iors which are stable against unilateral deviations in games
with incomplete information. Notice that we assume that
the multi-agent interaction (formalized as a game) is given,
and all the mediator can do is to perform actions on behalf
of the agents that explicitly allow it to do so.2

In order to illustrate the power of mediators for games
with incomplete information consider the following pre-Bayesian
game G that does not possess an ex post equilibrium. In G,
the column player has two possible types: A and B.

a b
a 5, 2 3, 0
b 0, 0 2, 2

A

a b
a 2, 2 0, 0
b 3, 0 5, 2

B

A mediator for G should specify the actions it will choose
on behalf of the players that give it the right to play. If
player 2 wants to give the mediator the right to play it should
also report a type. Consider the following mediator:

If both players give the mediator the right of play, then the
mediator will play on their behalf (a, a) if player 2 reports
A and (b, b) if player 2 reports B. If only player 1 gives the
mediator the right of play then the mediator will choose a
on his behalf. If only player 2 gives the mediator the right
of play, the mediator will choose action a (resp. b) on its
behalf, if B (resp. A) has been reported.

The mediator generates a new pre-Bayesian game,which
is called the mediated game. In the mediated game player
1 has three actions: Give the mediator the right of play,
denoted by m, or play directly a or b. Player 2 has four
actions: m − A, m − B,a,b, where m − A (m − B) means
reporting A (B) to the mediator and give it the right of play.
The mediated game is described in the following figure:

m−A m−B a b
m 5, 2 2, 2 5, 2 3, 0
a 3, 0 5, 2 5, 2 3, 0
b 2, 2 0, 0 0, 0 2, 2

A

1For games with complete information the main interest is
in leading agents to behaviors, which are stable against devi-
ations by coalitions. A special case of mediators was already
discussed in [8]. In this paper the authors discussed medi-
ators for a two-person game, which is known to the players
but not to the mediators, and they looked for Nash equilib-
rium in the new game generated by the mediator.
2This natural setting is different from the one discussed in
the classical theories of implementation and mechanism de-
sign, where a designer designs a new game from scratch in
order to yield some desired behavior.

m−A m−B a b
m 2, 2 5, 2 2, 2 0, 0
a 0, 0 2, 2 2, 2 0, 0
b 5, 2 3, 0 3, 0 5, 2

B

It is now easy to verify that giving the mediator the right
of play, and reporting truthfully, is an ex-post equilibrium
at the mediated game. That is, (f1, f2) is an ex post equi-
librium, where f1 = m, and f2(A) = m−A, f2(B) = m−B.

The aim of this paper is twofold. We introduce mediators
for games with incomplete information, and apply them in
the context of position auctions. Our choice of positions auc-
tions as the domain of application is not an accident; indeed,
positions auctions have become a central issue in advertise-
ment and the selection of appropriate position auctions for
that task is a subject of considerable amount of study [17,
3, 9, 4].3 Current position auctions however do not possess
ex-post equilibrium, i.e. solutions which are stable against
unilateral deviations regardless of the agents’ private infor-
mation, nor guarantee optimal social surplus. In contrast,
in the VCG position auction, which is currently not used
in practice, there is a truth-revealing ex post equilibrium,
which yields optimal surplus. We therefore suggest the use
of mediators in order to attempt and implement the output
of the VCG position auction, by transforming other (and in
particular current) position auctions into a VCG position
auction.4 More specifically, the mediated game will have
an ex post equilibrium, which generates the outcome of the
VCG position auction. One such mediator has already been
discussed for other purposes in the literature: An English
auction type of algorithm was constructed in [3] that takes
as an input the valuations of the players and outputs bids for
the next-price position auction. It was proved there that re-
porting the true type to this algorithm by each player forms
an ex post equilibrium, which generates the VCG outcome.
In our language this algorithm can be almost considered as a
mediator for the next-price position auction that implement
the VCG outcome function. What is missing, is a compo-
nent that punishes players who send their bids directly to
the auctioneer, and a proof that using the mediator services
and reporting the true type by each player is an ex post
equilibrium in the mediated game defined by the algorithm
and by the additional component. A mediator may generate
a desired outcome by punishing the players who do not use
its services with very high bids by the players that use its
services. We believe that such mediators are not realistic,
and therefore we concentrate on the search for valid medi-
ators that generate an ex post equilibrium and satisfy the
additional rationality condition: an agent’s payoff can not
be negative regardless of the actions taken by the agents
who did not choose the mediator’s services, or agents who
report false types to the mediator. We prove the existence
of such desired mediators for the next-price (Google-like)
position auctions5, as well as for a richer class of position
auctions, including all k-price position auctions, k > 1. For
k=1, the self-price position auction, we show that the ex-

3See also [12], where position auctions are titled ad auctions.
4In general, except for the VCG position auction we do not
expect position auctions to possess an ex post equilibrium
(see Footnote 7).
5Our proof uses an algorithm, which is different from the
algorithm in [3] discussed earlier.
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istence of such mediator depends on the tie breaking rule
used in the auction.

Mediators in one-item auctions (in particular first price
and second price auctions) have been already discussed in
[6, 11, 2]; however they all used a Bayesian model. Posi-
tion auctions are a restricted type of general pre-Bayesian
games. In this conference version we make the formal defi-
nition of mediators and implementing by mediation for the
special case of position auctions, and only in the full version
we present the general theory of mediators for pre-Bayesian
games. Most of the proofs are omitted from this conference
version.

2. POSITION AUCTIONS
In a position auction there is a seller who sells a finite

number of positions j ∈ K = {1, ..., m}. There is a finite
number of (potential) bidders i ∈ N = {1, ..., n}. We assume
that there are more bidders than positions, i.e. n > m.
The positions are sold for a fixed period of time. For each
position j there is a commonly-known number αj > 0, which
is interpreted as the expected number of visitors at that
position. αj is called the click-through rate of position j.
We assume that α1 > α2 > αm > 0. If i holds a position
then every visitor to this position gives i a revenue of vi > 0,
where vi is called the valuation of i. The set of possible
valuations of i is Vi = (0,∞).

We assume that the players’ utility functions are quasi-
linear. That is, if player i is assigned to position j and pays
pi per click then his utility is αj(vi − pi).

Every player is required to submit a bid, bi ∈ Bi = [0,∞).
We assume that bidding 0 is a symbol for non-participation.
Therefore, a player with a bid 0 is not assigned to any posi-
tion, and it pays 0.

In all position auctions we consider, the player with the
highest positive bid receives the first position, the player
with the second highest positive bid receives the second po-
sition, and so on. It is useful to define for every position
auction two dummy positions m + 1 and −1, which more
than one player may be ”assigned” to. All players, who par-
ticipate in the auction but do not get a position in K are
assigned to position m + 1 and all players who choose not
to participate are assigned to position −1. We also define
αm+1 = α−1 = 0.

An assignment of players to positions is called an alloca-
tion. Hence, an allocation is a vector s = (s1, s2, · · · , sn)
with si ∈ K ∪ {−1, m + 1} such that if si ∈ K then si 6= sl

for every l 6= i; si is the position of player i. Given the
above, a position auction is defined by its tie breaking rule,
which determines the allocation in case of ties, and by its
payment scheme. These are discussed below.

2.1 Tie breaking rules

In practice, the most commonly used tie breaking rule
is the First-Arrival rule: if a set of players submit the same
bid, their priority in receiving the positions is determined by
the times their bids were recorded; An earlier bid receives
a higher priority. In auction theory this tie breaking rule is
typically modelled by assuming that the auctioneer is using
a random priority rule. More specifically, let Γ be the set of
all permutations, γ = (γ1, ..., γn) of N . Every such γ defines
a priority rule as follows: i has a higher priority than k if and
only if γi < γk. Every vector of bids b and a permutation
γ uniquely determine an allocation. An auctioneer who is

using the random priority rule chooses a fixed priority rule
γ by randomizing uniformly over Γ. However, the resulting
priority rule is not told to the players before they make their
bids. When the priority rule γ is told to the players before
they make their bids, the tie breaking rule is called a fixed
priority rule. Dealing with a fixed priority rule simplifies
notations and proofs, and in most cases, and in particular
in this paper, results that are obtained with this tie breaking
rule are identical to the results obtained with the random
priority rule. Therefore we will assume this tie breaking
rule. In contrast, in Section 7 we discuss a non-standard
approach for analyzing directly the first-arrival tie breaking
rule.

Unless we say specifically otherwise we assume in this pa-
per a fixed priority rule.

Without loss of generality we assume that the fixed pri-
ority rule is defined by the natural order, γ̃ = (1, 2, ..., n).
That is, bidder i has a higher priority than bidder k if and
only if i < k. Given this fixed priority rule we can make the
following definitions, which apply to all position auctions:

We denote by s(b, i) the position player i is assigned to
when the bid profile is b. The allocation determined by b is
denoted by

s(b) = (s(b, 1), s(b, 2), · · · , s(b, n)).

For every j ∈ K ∪ {−1, m + 1} we denote by δ(b, j) the
set of players assigned to position j. Note that for j ∈ K,
δ(b, j) contains at most one player.

2.2 The payment schemes
Let α be a click-trough rate vector. Each position j ∈

K ∪ {−1, m + 1} is associated with a payment function,
pα

j : B → R+, where pα
j (b) is the payment for position j

when the bid profile is b. Naturally we assume that pα
−1

is identically zero. However, we also assume that pα
m+1 is

identically zero. Hence, a participant who is not assigned a
real position pays nothing.

We call the vector of payment functions pα = (pα
j )j∈K the

position payment scheme.
Remark: Whenever α is fixed or its value is clear from the
context we will allow ourselves to omit the superscript α
from the payment and other functions.

We deal with anonymous position payment schemes, i.e.
the players’ payments to the auctioneer are not influenced
by their identities. This is modeled as follows: Let b ∈ B =
B1 × B2 × · · · × Bn be a bid profile. We denote by b(j) the

jth highest bid in b. For j > n we let b(j) = 0. For example
if b = (3, 7, 3, 0, 2) then b(1) = 7, b(2) = 3, b(3) = 3, b(4) =
2, b(5) = 0. We denote b∗ = (b(1), · · · , b(n)). Anonymity is
modeled by the requirement that for every two bid profiles
b,d ∈ B, p(b) = p(d) whenever b∗ = d∗. That is, for
every position j there exists a real-valued function p̃j defined
over all ordered vectors of bids such that for every b ∈ B
pj(b) = p̃j(b

∗).
We further assume that a player never pays more than

his bid. That is pj(b) ≤ b(j) for every b ∈ B and for every
j ∈ K.

It is convenient in certain cases to describe the payment
functions indexed by the players. Let G be a position auc-
tion with a position payment scheme p.

For every player i we denote

qi(b) = ps(b,i)(b),
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and

q(b) = (q1(b), q2(b), · · · qn(b)).

Note that the correspondence p → q is one-to-one. We call q
the player payment scheme. All our assumptions about the
position payment schemes can be transformed to analogous
assumptions about the player payment schemes. For con-
venience, a position auction will be described either by its
position payment scheme or by its player payment scheme.

The utility function for player i, wi : Vi × B → R+ is
defined as follows:

wi(vi,b) = αs(b,i)(vi − qi(b)) = αs(b,i)(vi − ps(b,i)(b)).

2.3 Central position auctions
We next describe the payment schemes of three central

position auctions.
Self-price position auctions: Each player who is assigned
to a position with a positive click-through rate pays his own
bid. That is, for every j ∈ K and every b ∈ B

pj(b) = b(j) (1)

Next-price position auctions: In this auction (run with
a slight variation by Google), every player who is assigned
to a position with a positive click-through rate pays the bid
of the player assigned to the position right after him if there
is such a player, and zero otherwise. That is for every j ∈ K
and for every b ∈ B

pj(b) = b(j+1) (2)

VCG position auctions: In a Vickrey-Clarke-Groves (VCG)
position auction the payment function for position j ∈ K is
defined as follows.6 For every b ∈ B

pvcg
j (b) =

Pm+1
k=j+1 b(k)(αk−1 − αk)

αj
(3)

Note that the VCG position auction is not the next-price
position auction unless there is only one position and α1 = 1.

2.4 Mediators for position auctions
We denote by G = G(α,p) the position auction with

the click-through rate vector α and the payment scheme
p. Recall that the set of types of i is Vi = (0,∞). Let
V = V1×V2×· · ·×Vn be the set of profile of types, and for
every S ⊆ N let VS = ×i∈SVi.

A mediator for G is a vector of functions m = (mS)S⊆N ,
where mS : VS → BS . The mediator m generates a pre-
Bayesian game Gm, which is called the mediated game. In
this game every player i receives his type vi and can either
send a type, v̂i (not necessarily the true type) to the medi-
ator, or send a bid directly to the auction. If S is the set of
players that send a type to the mediator, the mediator bids
on their behalf mS(v̂S). Hence, the action set of player i in
the mediated game is Bi∪Vi, where conveniently Vi denotes
both, (0,∞) , and a copy of (0,∞), which is disjoint from

6We use the standard payment function of the VCG mech-
anism. A general VCG mechanism may be obtained from
the standard one by adding an additional payment function
to each player, which depends only on the types of the other
players. Some authors (see e.g., [7]) call the standard VCG
mechanism, the VC mechanism. According to this terminol-
ogy we actually deal with VC position auctions. However,
we decided to use the more common terminology.

Bi. We introduce the following terminology: The T-strategy
for a player in the mediated game is the strategy, in which
this player uses the mediator’s services and reports his true
value to the mediator. The T-strategy profile is the profile of
strategies in which every player is using the T-strategy. The
T-strategy profile is an ex post equilibrium in the mediated
game if for every player i and type vi, and for every vector of
types of the other players, v−i, the following two conditions
hold:
E1: i is not better off when he gives the mediator the right
of play and report a false type. That is, for every v̂i ∈ Vi

wi(vi,mN (vi,v−i)) ≥ wi(vi,mN (v̂i,v−i)).

E2: i is not better off when he bids directly. That is for
every bi ∈ Bi,

wi(vi,mN (vi,v−i)) ≥ wi(vi, (bi,mN\i(v−i))).

Whenever the T-strategy profile is an ex post equilibrium
in Gm, the mediator m implements an outcome function
in G. This outcome function is denoted by ϕm, and it is
defined as follows:

ϕm(v) = (s(mN (v)), q(mN (v)).

Hence, the range of the function ϕm is the Cartesian product
of the set of allocations with Rn

+.

3. IMPLEMENTING THE VCG OUTCOME
FUNCTION BY MEDIATION

In general, except for the VCG position auction we do not
expect position auctions to possess an ex post equilibrium.7

Therefore, the behavior of the participants in most position
auctions cannot be analytically predicted, and in practice it
can form a non-efficient allocation: an allocation that does
not maximize social surplus. In contrast, in the VCG po-
sition auction the truth-reporting strategy is a dominant
strategy for every player, and the resulting allocation is effi-
cient. Given a position auction G our goal is to construct a
mediator that would implement the outcome function of the
VCG position auction. This outcome function is defined as
follows:

ϕvcg(v) = (s(v), qvcg(v)).

Definition: Let G be a position auction . Let m be a
mediator for G. We say the m implements the VCG outcome
function in G, or that it implements ϕvcg in G if the T-
strategy profile is an ex post equilibrium in Gm, and ϕm =
ϕvcg.

We demonstrate our definitions so far by a simple exam-
ple:

Example 1. Consider a self-price auction G = G(α,p)
with 2 players and one position, with α1 = 1. That is, G is
a standard two-person first-price auction. The correspond-
ing VCG position auction is a standard second-price auc-
tion. We define a family of mediators mc, c ≥ 1, each of
them implements the VCG position auction. Assume both

7Actually, it can be shown that if a strategy profile b in
a position auction is an ex post equilibrium then for every
player i bi is a dominant strategy. It is commonly conjec-
tured that except for some extremely artificial combinatorial
auctions , the VCG combinatorial auctions are the only ones
with dominant strategies (see [10]).
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players use the mediator’s services and send him the types
v̂ = (v̂1, v̂2), then all mediators act similarly and as follows:
If v̂1 ≥ v̂2 the mediator makes the following bids on behalf
of the players: b1 = v̂2, and b2 = 0. If v̂2 > v̂1, the mediator
makes the bids b1 = 0, b2 = v̂1. If only one player uses
the mediator services, say player i, then mediator mc bids
bi = cv̂i on behalf of i. We claim that for every c > 1, the
T-strategy profile is an ex post equilibrium in the mediated
game generated by mc. Indeed, assume player 2 reports his
type v2 to the mediator, and consider player 1.

If v1 ≥ v2 then by using the T-strategy player 1 receives the
position and pays v2. Hence, 1’s utility is v1−v2. If player 1
deviates by using the mediator’s services and reporting v̂1 ≥
v2 his utility is still v1 − v2. If he reports v̂1 < v2 his utility
will be 0. If player 1 does not use the mediator, he should
bid at least cv2 in order to get the positions, and therefore
his utility cannot exceed v1 − v2.

If v1 < v2, then the T-strategy yields 0 to player 1, and
any other strategy yields a non-positive utility.

Obviously each of the mediators mc implements the VCG
outcome function. Note however, that the T-strategy is not
a dominant strategy when c > 1; e.g. if v1 > v2 and player
2 bids directly v2 (without using the mediator services), then
bidding directly v1 is better for player 1 than using the T-
strategy: in the former case player 1’s utility is 0 and in the
latter case her utility is negative.

It is interesting to note that this simple example can not
be extended to general self-price position auctions, as will
be discussed in section 4.

While each of the mediators mc in Example 1 implements
the VCG outcome function, the mediator with c = 1 has
a distinct characteristic: a player who uses the T-strategy
cannot get a negative utility. In contrast, for every c > 1, if
say player 2 does not use the mediator services, participates
directly and bids less than cv1, then the T-strategy yields a
negative utility of (1− c)v1 to player 1. This motivates our
definition of valid mediators:

Let G be a position auction. A mediator for G is valid,
if for every player, using the T-strategy guarantees a non-
negative level of utility.

Formally, a mediator m for G, is valid if for every subset
S ⊆ N and every player i ∈ S wi(vi, mS(vS),b−S) ≥ 0 for
every b−S ∈ B−S and every vs ∈ VS .

4. MEDIATORS IN NEXT-PRICE POSITION
AUCTIONS

We now show that there exists a valid mediator, which im-
plements the VCG outcome function in next-price position
auctions. Although in the following section we prove a more
general result, we present this result first, given the impor-
tance of next-price position auctions in the literature and
in practice. Our proof makes use of the following technical
lemma.

Lemma 1. Let pvcg be the VCG payment scheme.

1. pvcg
j (b) ≤ b(j+1) for every j ∈ K.

2. pvcg
j (b) ≥ pvcg

j+1(b) for every j = 1, ..., m − 1 and for
every b ∈ B, where for every j, equality holds if and
only if b(j+1) = b(j+2) = · · · = b(m+1).

The proof of Lemma 1 is given in the full version. We can
now show:

Theorem 2. Let G be a next-price position auction. There
exists a valid mediator that implements ϕvcg in G.

Theorem 2 follows from a more general theorem given in the
next section. However, we still provide a proof since a more
simple and intuitive mediator is constructed for this case.
Proof of Theorem 2. We define a mediator m, which will
implement the VCG outcome function in G: For every v ∈
V let mN (v) = b(v), where b(v) is defined as follows:
For every player i such that 2 ≤ s(v, i) ≤ m let bi(v) =
pvcg

s(v,i)−1(v).8 For every i ∈ δ(v, m + 1), bi(v) = pvcg
m (v).

Let bδ(v,1)(v) = 1 + max{i:s(v,i)≥2}bi(v).
For every S ⊆ N such that S 6= N and for every vS ∈ VS

let mS(v) = vS . This completes the description of the
mediator m.

We show that ϕm(v) = ϕvcg(v) for every v ∈ V . Let
v ∈ V be an arbitrary valuation vector.

We have to show that s(b(v)) = s(v) and that q(b(v)) =
qvcg(v):

We begin by showing that s(b(v)) = s(v). It is sufficient
to show that whenever 1 ≤ s(v, i) < s(v, l) ≤ m + 1 for
some i 6= l, then s(b(v), i) < s(b(v), l).

We first show it for s(v, i) = 1, that is δ(v, 1) = i. In
this case bδ(v,1)(v) > bj(v) for every j 6= i, s(b(v), i) = 1.
Therefore s(b(v), i) < s(b(v), l). If s(v, i) > 1, we distin-
guish between two cases.

1. vi = vl. Since s(v, i) < s(v, l), the fixed priority rule
implies that i < l. By the second part of Lemma 1,
pvcg

s(v,i)−1(v) ≥ pvcg
s(v,l)−1(v). Therefore bi(v) ≥ bl(v),

which yields s(b(v), i) < s(b(v), l).

2. vi > vl. Let j + 1 = s(v, i). That is v(j+1) = vi, and
therefore by the second part of Lemma 1, pvcg

s(v,i)−1(v) >

pvcg
s(v,i)(v). Since s(v, i) ≤ s(v, l) − 1, by the second

part of Lemma 1, pvcg
s(v,i)(v) ≥ pvcg

s(v,l)−1(v). There-

fore pvcg
s(v,i)−1(v) > pvcg

s(v,l)−1(v), which yields bi(v) >

bl(v). Therefore s(b(v), i) < s(b(v), l).

This completes the proof that s(b(v)) = s(v) for all v ∈ V .
Observe that for every player i such that s(b(v), i) ∈ K

ps(b(v),i)(b(v)) = pvcg
s(v,i)(v).

Therefore qi(b(v)) = qvcg
i (v) for every i ∈ N . This shows

that q(b(v)) = qvcg(v) for all v ∈ V . Hence, ϕm = ϕvcg.
We proceed to prove that the T-strategy is an ex-post

equilibrium. Note that by the truthfulness of VCG, it is not
beneficial for any player i to miss report her value to the
mediator, given that all other players use the T-strategy.
Next we show that it is not beneficial for a single player i ∈
N to participate in the auction directly if all other players
use the T-strategy. Fix some v ∈ V . Assume that player i
is the only player that participates directly in the auction.
Hence, v−i is the vector of bids submitted by the mediator.
Let bi be player i’s bid. Let k = s(v, i). Therefore, since
ϕm = ϕvcg, s(b(v), i) = k. Let j be player i’s position in the
deviation. Hence j = s((v−i, bi), i). If j /∈ K then player i’s

8Recall that s(b, i) denotes the position of player i under the
bid profile b, and δ(b, j) denotes the set of players assigned
to position j. Whenever j ∈ K, we slightly abuse notations,
and also refer to δ(b, j) as the player that is assigned to
position j.
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utility is zero and therefore deviating is not worthwhile for
i. Suppose j ∈ K. Then

αk(vi − pk(b(v))) = αk(vi − pvcg
k (v)) ≥

αj(vi − pvcg
j (v−i, bi)) ≥ αj(vi − v(j+1)),

where the first equality follows from ϕm = ϕvcg, the first
inequality follows since VCG is truthful, and the second in-
equality follows from the first part of Lemma 1. Since pj

is position j’s payment function in the next-price position
auction, αj(vi − v(j+1)) = αj(vi − pj(v−i, bi)). Therefore

αk(vi − pk(b(v))) ≥ αj(vi − pj(v−i, bi)).

Hence, player i does not gain from participating directly in
the auction.

Finally we show that m is valid. If all players choose
the mediator then by the first part of Lemma 1 each player
which uses the T-strategy will not pay more than his value.
Consider the situation in which a subset of players, S, par-
ticipate directly in the auction. Since the mediator submits
the reported values on behalf of the other players, these
other players will not pay more than their reported values.
Hence a player which used the T-strategy will not pay more
than his value. 2

5. MEDIATORS IN GENERALIZED NEXT-
PRICE POSITION AUCTIONS

In the previous section we discussed the implementation
of the VCG outcome function in the next price position auc-
tion. In this section we deal with a more general family of
position auctions, in which the payment of each player who
has been assigned a position, is a function of the bids of
players assigned to ”lower” positions than his own. The
payment scheme p of such a position auction satisfies the
following condition:
N1: For every j ∈ K and every b1,b2 ∈ B such that b1

(l) =

b2
(l) for every l > j, we have that pj(b

1) = pj(b
2).

We next provide sufficient conditions for implementing the
VCG outcome function by a valid mediator in position auc-
tions whose payment schemes satisfy N1.

We need the following notation and definition. For every
position auction G and every b ∈ B let ϕG(b) = (s(b), q(b)).

We say that G is a V CG cover if for every v ∈ V there
exists b ∈ B such that ϕG(b) = ϕvcg(v).

We say that G is monotone if pj(b) ≥ pj(b
′) for every

j ∈ K and for every b ≥ b′, where b ≥ b′ if and only if
bi ≥ b′i for every i ∈ N .

We are now able to show:

Theorem 3. Let G = G(α,p) be a position auction such
that p satisfies N1. If the following conditions hold then
there exists a valid mediator that implements ϕvcg in G:

1. G is a V CG cover

2. G is monotone.

The proof of Theorem 3 is given in the full version. We
next provide the construction of the valid mediator, which
will implement the VCG outcome function in a position auc-
tion G, which satisfies the conditions of Theorem 3:

Algorithm for building m for G:

• For every v ∈ V let mN (v) = b(v), where b(v) is
some bid profile such that ϕG(b(v)) = ϕvcg(v)

• For every i and for every v−i ∈ V−i, let
vi = (v−i, M(v−i)), where M(v−i) = 1 + maxj 6=ivj .

• For every i ∈ N and every v−i ∈ V−i, let mN\{i}(v−i) =

b−i(v
i), where b(vi) is some bid profile such that

ϕG(b(vi)) = ϕvcg(vi).

• For every S ⊆ N , such that 1 ≤ |S| ≤ n − 2, let
mS(vS) = vS .

Remark: As we wrote, Theorem 3 applies in particular
to next-price position auctions discussed in Section 4. How-
ever, this Theorem applies to many other interesting posi-
tion auctions as will be shown later. Moreover, the mediator
constructed for this general case is different from the one in
the proof of Theorem 2.

We now show that condition N1 as well as the require-
ment that G is a V CG cover, and the requirement that G
is monotone are all necessary for establishing our result. It
is easy to see that if G is not a V CG cover then Theorem
3 does not hold. The following example shows the necessity
of the monotonicity condition.

Example 4. Let G = G(α,p) be the following position
auction. Let n = 4, m = 3, α = (100, 10, 1), p1(b) = b(2) −
b(3) and p2(b) =

b(3)+b(4)
2

, and p3(b) = b(4). Notice that G
is not monotone. Observe that condition N1 is satisfied. In
the full version we show that G is a V CG cover, and it is
not possible to implement the VCG outcome function in G
with a valid mediator.

The next example shows that Theorem 3 does not hold,
when condition N1 is not satisfied.

Example 5. Let G = G(α,p) be the following position
auction. Let N = {1, 2, 3}, K = {1, 2} and α = (2, 1). Let

p1(b) =
b(1)
4

and p2(b) = b(2). It is immediate to see that the
monotonicity condition is satisfied. We next show that G is
a V CG cover. Let v ∈ V be an arbitrary valuation vector.
We need to find a bid profile b(v) such that ϕG(b(v)) =

ϕvcg(v). Note that pvcg
1 (v) =

v(2)+v(3)
2

and pvcg
2 (v) = v(3).

We define the bid profile b(v) as follows.

Let bδ(v,3)(v) =
v(3)
2

, bδ(v,2)(v) = v(3) and bδ(v,1)(v) =
2v2 + 2v(3).

By the construction of b(v), s(b(v), i) = s(v, i) for i =
1, 2, 3 . In addition observe that pj(b(v)) = pvcg

j (v) for

j = 1, 2, 3, 4. Therefore ϕG(b(v)) = ϕvcg(v). Since v is
arbitrary, G is a V CG cover.

Naturally N1 is not satisfied. Suppose in negation that
there exists a valid mediator m, which implements the VCG
outcome function in G. Consider the following vector of
valuations v = (12, 10, 8). If all players use the mediator
then player 2 (with valuation 10) gets position 2, pays 8, and
therefore her utility is 1(10−8) = 2. Player 2 can always bid
more than the other players, and by that cause some other
player to be positioned second; Since the mediator is required
to be valid it must be that the mediator submits not more
than 12 on behalf of both players 1 and 3. But then player
2 can bid 13, and win the first position; therefore, player 2’s
utility will be 2(10 − 13

4
) > 8. This contradicts that m is a

valid mediator that implements the VCG outcome function
in G.

To summarize, we have shown sufficient conditions for
transforming a large class of position auctions to the V CG
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position auction by mediation. Moreover by dropping any
of our conditions we get that such transformation might not
be feasible.

In the next subsections we provide classes of interesting
position auctions which can be transformed to the VCG po-
sition auction by mediation. These auctions satisfy the con-
ditions of Theorem 3. However, in order to use Theorem 3
one has to check that a certain position auction, G is a VCG
cover. In the full version paper, before we apply this theo-
rem we present another useful theorem that gives sufficient
conditions guaranteeing that G is a VCG cover.

5.1 Generalized next-price position auctions
In a generalized next-price auction the payment scheme is

of the following form. For every j ∈ K and for every b ∈ B
pj(b) = b(l(j)) where l(j) is an integer such that l(j) > j.9.

We show:

Proposition 1. Let G be a generalized next-price posi-
tion auction. There exists a valid mediator that implements
ϕvcg in G if and only if the following two conditions hold:
(i) l(j + 1) > l(j) for j = 1, ..., m− 1, and (ii) l(m) ≤ n.

5.2 K-next-price position auctions
In k-next-price position auctions the payment scheme is

defined as follows: For every j ∈ K and for every b pj(b) =
b(j+k). K-next-price position auctions are, in particular gen-
eralized next-price position auctions. Therefore Proposition
1 yields as a corollary:

Proposition 2. Let k ≥ 1. Let G be a k-next-price posi-
tion auction. There exists a valid mediator that implements
ϕvcg in G if and only if n ≥ m + k − 1.

5.3 Weighted next-price position auctions
In weighted next-price position auctions the payment schemes

are of the following form. For every j ∈ K and for every

b ∈ B, pj(b) =
b(j+1)

cj
, where cj ≥ 1.

Proposition 3. Let G be a weighted next-price position
auction with the weights c1, c2, ..., cm. There exists a valid
mediator that implements ϕvcg in G if and only if c1 ≥ · · · ≥
cm.

5.4 Google-like position auctions
Google-like ad auctions are slightly different from next-

price auction. In these auctions the click-trough rate of an
ad i in position j is the product of the ”quality” of ad i,
βi > 0, and the position click-trough rate αj > 0.10 Players
are ranked in the positions by biβi.

Let b ∈ B. Let δ̃(b, j) be defined as follows. For every

j ∈ K, let δ̃(b, j) be the player i that obtains position j,

and for j = m let δ̃(b, j) = i, where i obtained position m
in case there is more than one player i such that bi = b(m),
then i is chosen between them via the breaking rule γ̃.

If player i obtains position j ∈ K then she pays pj(b) =
β

δ̃(b,j+1)b
δ̃(b,j+1)

βi
. Therefore player i’s utility will be

αjβi(vi−
bδ̃(b,j+1)

βi
βδ̃(b,j+1)) = αj(viβi− bδ̃(b,j+1)βδ̃(b,j+1)).

9Recall that b(j) = 0 for every j > n
10See e.g. [17].

Hence by denoting ṽi = viβi for every i ∈ N , and by apply-
ing Theorem 2 we obtain:

Proposition 4. There exists a valid mediator which im-
plements the VCG outcome function in the Google-like posi-
tion auction.

6. SELF-PRICE POSITION AUCTIONS
Let G be a self-price position auction as described at sec-

tion 2. At example 1 we showed that when there is one
position and two players, the VCG outcome function is im-
plemented by a valid mediator in this auction. The proof
in this example can be easily generalized to show that the
VCG outcome function can be implemented by a valid me-
diator in a self-price position auction, in which there is one
position and an arbitrary number of players, n ≥ 2.

Next we show that it is impossible to implement the VCG
outcome function, even by a non-valid mediator, in a self-
price position auction which has more than one position
(m > 1).

Theorem 6. Let G be a self-price position auction with
more than one position. There is no mediator that imple-
ments the VCG outcome function in G.

Proof. Let v ∈ V be the following valuation profile. vn = 10
and v1 = v2 = · · · = vn−1 = 5. The VCG outcome function
assigns to this v an allocation, in which player n receives
position 1 and player 1 receives position 2. The payments of
players n and 1 are both equal to 5. In order to implement
such an outcome, a mediator must bid 5 on behalf of player
n (so that this player pays 5), and it must bid less than 5 on
behalf of any other player, because otherwise another player
receives position 1. Note that the bid of any other player
cannot equal 5 because every other player has an higher
priority than n. In particular, even if player 1 gets indeed
position 2 he will pay less than 5. Hence, no mediator can
implement the VCG outcome function in G.2

The proof of Theorem 6 heavily uses the fixed priority
rule assumption. However, as we have already said, all our
results including this theorem hold also for the tie breaking
rule defined by the random priority rule. The proof of the
impossibility theorem for the random priority rule uses the
fact that the particular bad priority rule used in the proof
of Theorem 6, has a positive probability.

As we previously discussed, the fixed and random prior-
ity rules are just convenient ways to model the first-arrival
rule, which is common in practice. When one attempts to
directly model position auctions that use the first-arrival
rule without these modeling choices he tackles a lot of mod-
eling problems. In particular, it is not clear how to model a
position auction with the first-arrival rule as a game with in-
complete information. To do this, one has to allow a player
not only to submit a bid but also to decide about the time
of the bid. This raises a lot of additional modeling prob-
lems, such as determining the relationship between the time
a player decides to submit a bid and the time in which this
bid is actually recorded. Hence, efficient modeling as a game
may be untractable. Nevertheless, in the next section we
will analyze mediators in position auctions, which use the
first-arrival rule. We will define ex post equilibrium and the
notion of implementation by mediation without explicitly
modeling well-defined games. We will show that in this case
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there is a way to implement the VCG outcome function in
a self-price position auction. Moreover, we will find a valid
mediator that does the job.

7. POSITION AUCTIONS WITH THE FIRST
ARRIVAL RULE

Let G be a position auction with the first-arrival rule.
Every mediator for G has the ability to determine the order
in which the bids he submits on behalf of the players are
recorded; He can just submit the bids sequentially, waiting
for a confirmation before submitting the next bid. We need
the following notations.

Every order of bidding can be described by some γ ∈ Γ; i
bids before k if and only if γi < γk. Hence, an order of bids
can serve as a priority rule. For every order of bids γ and a
vector of bids b we define s(b, γ, i) as the position assigned
to i. We denote the payment of i when the vector of bids
is b and the order of bidding is γ by qi(b, γ) = ps(b,γ,i)(b),
and we denote wi(vi,b, γ) the utility of i.

A mediator for G should determine the bids of the players
who use its services and also the order of bids as a function
of the reported types. However, all mediators discussed in
this paper will use the same rule to determine the order of
bids: If all players report the vector of types v̂, the medi-
ator uses the order of bids γv̂, which is defined as follows:
γv̂

i < γv̂
k if and only if v̂i > v̂k, or v̂i = v̂k and i < k. For

example, if n = 3 and the reported types are v̂ = (6, 7, 6),
then γv̂ = (2, 1, 3). If only a strict subset of the players
use the mediator’s services, the mediator applies the same
order of bids rule to this subset. A mediator for a position
auction with the first arrival rule is therefore defined by a
vector m = (mS)S⊆N . However, such a mediator is called
a directed mediator in order to stress the fact that it de-
termines not only the bids but also the order of bids. To
summarize: If all players use the directed mediator m, and
the reported bids are v̂, then the directed mediator bids
mN (v̂)i on behalf of i, i receives the position s(v̂, γv̂, i),
and pays qi(mN (v̂), γv̂). If only the subset S uses the me-
diator’s services, the reported types are v̂S , and the other
players bid directly b−S then the actual order of bids is not
uniquely determined. If this order is γ then the position
of i ∈ N is s(b, γ, i), and its payment is qi(b, γ), where
b = (mS(v̂S),b−S). In particular, if every player is using
the T-strategy and the players’ profile of types is v, then
the outcome generated by the directed mediator is

ψm(v) = (s(v, γv),q(mN (v), γv).

But why should the players use the T strategy? Assume all
players but i use the T strategy. If player i deviates from the
T strategy by reporting a false type to the directed mediator,
the resulting outcome is well-defined. On the other hand,
when this player sends a bid directly to the auctioneer, the
resulting outcome is not clear, because the order of bids is
not clear.11

A good desired directed mediator would be one that no
player would want to deviate from the T strategy indepen-
dently of the order in which the bids are recorded because
of his deviation. More specifically:
Definition: Let G be a position auction with the first-
arrival rule, and let m be a directed mediator for G. The

11It is clear however, that the resulting order γ is consistent
with the well-defined order of bids of N \ i.

T-strategy profile is an ex post equilibrium with respect to
m if for every player i and type vi, and for every vector of
types of the other players, v−i, the following two conditions
hold:
F1: i is not better off when he gives the directed mediator
the right of play and reports a false type. That is, for every
v̂i ∈ Vi

wi(vi,mN (vi,v−i), γ
(vi,v−i)) ≥ wi(vi,mN (v̂i,v−i), γ

(v̂i,v−i)).

F2: i is not better off when he bids directly independently
of the resulting order of recorded bids. That is for every
bi ∈ Bi, and for every γ ∈ Γ, which is consistent with the
order of bids of members of N \ i resulting from the vector
of types v−i,

wi(vi,mN (vi,v−i), γ
(vi,v−i)) ≥ wi(vi, (bi,mN\i(v−i)), γ).

The notion of valid directed mediators is analogously de-
fined:
Definition: Let G be a position auction with the first-
arrival rule. A directed mediator for G is valid, if for every
player, using the T-strategy guarantees a non-negative level
of utility.

Formally, a directed mediator m for G is valid, if for every
player i with type vi, for every subset S ⊆ N such that i ∈ S,
for every vS\i, and for every b−S , wi(vi,mS(vS),b−S , γ) ≥
0 for every γ ∈ Γ, which is consistent with the standard
order of bids of S determined by the mediator when the
reported types are vS .

The notion of implementation by mediation remains as
before: The directed mediator m implements the VCG out-
come function in G if ψm = ϕvcg.

Our previous results remain true for directed mediators for
position auctions with the first arrival rule. Next we show
that in contrast to Theorem 6, it is possible to implement the
VCG outcome function in every self-price position auction
with the first-arrival rule.

Theorem 7. Let G = G(α,p) be the self-price position
auction with the first arrival rule. There exists a valid di-
rected mediator that implements the VCG outcome function
in G.

In the following theorem we provide sufficient conditions
for implementing that the VCG outcome function in a po-
sition auction with the first-arrival rule. A special charac-
teristic of auctions satisfying these sufficient conditions is
that players’ payments may depend also on their own bid,
in contrast to the auctions discussed in Theorem 3. The long
proof of this theorem is in the spirit of all previous proofs,
and therefore it is omitted.

Theorem 8. Let G = G(α,p) be a position auction with
the first-arrival rule. If the following conditions hold then
there exists a valid directed mediator for G that implements
the VCG outcome function in G.

1. For every v ∈ V there exists b ∈ B such that pj(b) =
v(j) for every j ∈ K.

2. G is monotone.

3. pj(b) ≥ pj+1(b) for every j ∈ K and every b ∈ B.

4. For every j ∈ K and every b1,b2 ∈ B such that b1
(l) =

b2
(l) for every l ≥ j, pj(b

1) = pj(b
2).
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