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Abstract

Motivated by the control theoretic distinction between controllable and uncontrollable

events, we distinguish between two types of agents within a multi-agent system: controllable

agents, which are directly controlled by the system's designer, and uncontrollable agents,

which are not under the designer's direct control. We refer to such systems as partially

controlled multi-agent systems, and we investigate how one might inuence the behavior of

the uncontrolled agents through appropriate design of the controlled agents. In particular,

we wish to understand which problems are naturally described in these terms, what methods

can be applied to inuence the uncontrollable agents, the e�ectiveness of such methods, and

whether similar methods work across di�erent domains. Using a game-theoretic framework,

this paper studies the design of partially controlled multi-agent systems in two contexts: in

one context, the uncontrollable agents are expected utility maximizers, while in the other

they are reinforcement learners. We suggest di�erent techniques for controlling agents'

behavior in each domain, assess their success, and examine their relationship.

1. Introduction

The control of agents is a central research topic in two engineering �elds: Arti�cial In-

telligence (AI) and Discrete Events Systems (DES) (Ramadge & Wonham, 1989). One

particular area both of these �elds have been concerned with is multi-agent environments;

examples include work in distributed AI (Bond & Gasser, 1988), and work on decentralized

supervisory control (Lin & Wonham, 1988). Each of these �elds has developed its own

techniques and has incorporated particular assumptions into its models. Hence, it is only

natural that techniques and assumptions used by one �eld may be adopted by the other or

may lead to new insights for the other �eld.

In di�erence to most AI work on multi-agent systems, work on decentralized discrete

event systems distinguishes between controllable and uncontrollable events. Controllable

events are events that can be directly controlled by the system's designer, while uncontrol-

lable events are not directly controlled by the system's designer. Translating this termi-

nology into the context of multi-agent systems, we introduce the distinction between two

types of agents: controllable agents , which are directly controlled by the system's designer,

and uncontrollable agents , which are not under the designer's direct control. This leads
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naturally to the concept of partially controlled multi-agent system (PCMAS) and to the

following design challenge: ensuring that all agents in the system behave appropriately

through adequate design of the controllable agents. We believe that many problems are

naturally formulated as instances of PCMAS design. Our goal is to characterize important

instances of this design problem, to examine the tools that can be used to solve it, and to

assess the e�ectiveness and generality of these tools.

What distinguishes partially controlled multi-agent systems in the AI context from sim-

ilar models in DES are the structural assumptions we make about the uncontrolled agents

involved. Unlike typical DES models which are concerned with physical processes or de-

vices, AI is particularly interested in self-motivated agents, two concrete examples of which

are rational agents, i.e., expected utility maximizers, and learning agents, e.g., reinforce-

ment learners. Indeed, these examples constitute the two central models of self-motivated

agents in game theory and decision theory, referred to as the educative and evolutive models

(e.g., see Gilboa & Matsui, 1991). The special nature of the uncontrollable agents and the

special structure of the uncontrollable events they induce is what di�erentiates PCMAS

from corresponding models in the DES literature. This di�erence raises new questions and

suggests a new perspective on the design of multi-agent systems. In particular, it calls for

techniques for designing controllable agents that, by exploiting the structural assumptions,

can inuence the behavior of the uncontrollable agents and lead the system to a desired

behavior.

In order to understand these issues, we study two problems that can be stated and solved

by adopting the perspective of PCMAS design; problems which by themselves should be

of interest to a large community. In both of these problems our goal is to inuence the

behavior of agents that are not under our control. We exert this inuence indirectly by

choosing suitable behaviors for those agents that are under our direct control. In one case,

we attempt to inuence the behavior of rational agents, while in the other case, we try to

inuence learning agents.

Our �rst study is concerned with the enforcement of social laws. When a number of

agents designed by di�erent designers work within a shared environment, it can be bene�cial

to impose certain constraints on their behavior, so that, overall, the system will function

better. For example, Shoham and Tennenholtz (1995) show that by imposing certain \tra�c

laws," they can considerably simplify the task of motion planning for each robot, while still

enabling e�cient motions. Indeed, as we see later, such conventions are at the heart of

many coordination techniques in multi-agent systems. Yet, without suitable mechanisms,

rational agents may have an incentive not to follow these conventions. We show how, in

certain cases, we can use the perspective of partially controlled multi-agent systems and the

structural assumption of rationality to enforce these conventions.

Our second study involves a two-agent system consisting of a teacher and a student.

The teacher is a knowledgeable agent, while the student is an agent that is learning how

to behave in its domain. Our goal is to utilize the teacher (which is under our control)

to improve the behavior of the student (which is not controlled by us). Hence, this is an

instance of partially controlled multi-agent systems in which the structural assumption is

that the uncontrolled agent employs a particular learning algorithm.

Both studies presented in this paper suggest techniques for achieving satisfactory system

behavior through the design of the controllable agents, and where relevant, these techniques
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are experimentally assessed. Beyond the formulation and solution of two interesting prob-

lems in multi-agent system design, this paper suggests a more general perspective on certain

design problems. Although we feel that it is still premature to draw general conclusion about

the potential for a general theory of PCMAS design, certain concepts, those of punishment

and reward, suggest themselves as central to this area.

The paper is organized as follows: In Section 2, we describe the problem of enforcing

social behavior in multi-agent systems. In Section 3 we describe a standard game-theoretic

model for this problem and suggest the mechanism of threats and punishments as a general

tool for this class of problems. Issues that pertain to the design of threats and punishments

are discussed in Section 4. Section 5 introduces our second case study in PCMAS design:

embedded teaching of reinforcement learners. In this context, a teacher and a learner

are embedded in a shared environment with the teacher serving as the controller whose

aim is to direct the learner to a desired behavior. A formal model of this problem is

introduced in Section 6. In Section 7, we show how to derive optimal teaching policies (under

certain assumptions) by viewing teaching as a Markov decision process. The e�ectiveness

of di�erent teaching policies is studied experimentally in Section 8. Finally, in Section 9,

we examine the relationship between the methods used in each of the two domains and the

possibility of a general methodology for designing partially controlled multi-agent systems.

We conclude in Section 10, with a summary and discussion of related work.

2. The Enforcement of Social Behavior

In this section we introduce the problem of the enforcement of social laws in a multi-agent

context. Our proposed solution falls naturally out of the PCMAS design perspective we

take. Here, we explain and motivate the particular problem of social law enforcement and

our approach to its solution. In Sections 3 and 4 we formalize and investigate this approach

in the framework of a general game-theoretic model.

We use the following scenario to illustrate the problem:

You have been hired to design a new working environment for arti�cial

agents. Part of your job involves designing a number of agents that will use

and maintain a warehouse. Other agents, designed by di�erent designers, will

be using the warehouse to obtain equipment. To make sure that di�erent agents

designed by di�erent designers can operate e�ciently in this environment, you

choose to introduce a number of social laws, that is, constraints on the behavior

of agents, that will help the agents coordinate their activities in this domain.

These rules include a number of `tra�c laws', regulating motion in the domain,

as well as a law that speci�es that every tool that is used by an agent must be

returned to its designated storage area. Your robots are programmed to follow

these laws, and you expect the others to do so. Your laws are quite success-

ful, and allow e�cient activity in the warehouse, until a new designer arrives.

Pressed by his corporate bosses to deliver better performance, he decides to

exploit all your rules. He designs his agent to locally maximize its performance,

regardless of the social laws. What can you do?
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In multi-participant environments, as the one above, each agent might have its own

dynamic goals, and we are interested in �nding ways in which agents can coexist while

achieving their goals. Several approaches for coordination of agent activity are discussed in

the distributed systems and the DAI literature. Some examples are: protocols for reaching

consensus (Dwork & Moses, 1990), rational deals and negotiations (Zlotkin & Rosenschein,

1993; Kraus & Wilkenfeld, 1991; Rosenschein & Genesereth, 1985), organizational struc-

tures (Durfee, Lesser, & Corkill, 1987; Fox, 1981; Malone, 1987), and social laws (Moses

& Tennenholtz, 1995; Shoham & Tennenholtz, 1995; Minsky, 1991; Briggs & Cook, 1995).

In some of these methods, the behavior of an agent is predetermined or prescribed from a

certain stage, for example, the content of the deal after it is reached, the outcome of the

negotiation process after it is completed, or the social law after it is instituted. This work

relies on the assumption that the agents follow these prescribed behaviors, e.g., they obey

the law or stick to the agreement. This assumption is central to the success of any of these

methods. However, it makes agents that follow the rules vulnerable to any rational agent

that performs local maximization of payo�, exploiting the knowledge that others follow the

rules. In our example, the new designer may program his robot not to return the tools,

saving the time required to do so, thus causing other agents to fail in their tasks.

Despite its somewhat futuristic avor (although instances of such shared environments

are beginning to appear in cyberspace), this scenario is useful in illustrating the vulnerability

of some of the most popular coordination mechanism appearing in the multi-agent literature

within AI (e.g., see Bond & Gasser, 1988) when we assume that the agents involved are

fully rational. As an aside, note that, in this case, we actually need not attribute much

intelligence to the agents themselves, and it is su�cient to assume that their designers

design them in a way that maximizes their own utility, disregarding the utility of the other

agents.

In order to handle this problem we need to modify existing design paradigms. By

adopting the perspective of partially controlled multi-agent systems, we obtain one possible

handle on this problem, which requires making the following basic assumption: that the

original designer, as in the above scenario, controls a number of reliable agents.

1

Our

basic idea is that some of these reliable agents will be designed to punish agents that

deviate from the desirable social standard. The punishment mechanism will be `hard-

wired' (unchangeable) and will be common-knowledge. The agents that are not controlled

by the original designer will be aware of this punishment possibility. If the punishment

mechanism is well designed, deviations from the social standard become irrational. As a

result, no deviation will actually occur and no punishment will actually be executed! Hence,

by making our agents a bit more sophisticated, we can prevent the temptation of breaking

social laws.

In the suggested solution we adopt the perspective of partially controlled multi-agent sys-

tems. Some of the agents are controllable, while others are uncontrollable but are assumed

to adopt the basic model of expected utility maximization. The punishment mechanism

is (part of) the control strategy that is used to inuence the behavior of the uncontrolled

agents.

1. For ease of exposition, we assume that reliable agents follow the designer's instructions; we assume that

no non-malicious failures, such as crash failures, are possible.
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3. Dynamic Game Theoretic Model

In this section we introduce a basic game-theoretic model, which we use to study the

problem of the enforcement of social behavior and its solution. Later on, in Sections 5{8,

this model will be used to study embedded teaching. We wish to emphasize that the model

we use is the most common model for representing emergent behavior in a population

2

(e.g., Huberman & Hogg, 1988; Kandori, Mailath, & Rob, 1991; Altenberg & Feldman,

1987; Gilboa & Matsui, 1991; Weidlich & Haag, 1983; Kinderman & Snell, 1980).

De�nition 1 A k-person game g is de�ned by a k-dimensional matrix M of size n

1

�� � ��

n

k

, where n

m

is the number of possible actions (or strategies) of the m'th agent. The entries

of M are vectors of length k of real numbers, called payo� vectors. A joint strategy in M

is a tuple (i

1

; i

2

; : : : ; i

k

), where for each 1 � j � k, it is the case that 1 � i

j

� n

j

.

Intuitively, each dimension of the matrix represents the possible actions of one of the k

players of the game. Following the convention used in game theory, we often use the term

strategy in place of action. Since the dimensions of the matrix are n

1

� � � � � n

k

, the i'th

agent has n

i

possible strategies to choose from. The j'th component of the vector residing

in the (i

1

; i

2

; : : : ; i

k

) cell of M (i.e., M

i

1

;i

2

;:::;i

k

) represents the feedback player j receives

when the players' joint strategy is (i

1

; i

2

; : : : ; i

k

), that is, if agent m's strategy is i

m

for

all 1 � m � k. Here, we use the term joint strategy to refer to the combined choice of

strategies of all the agents.

De�nition 2 A n-k-g iterative game consists of a set of n agents and a given k person

game g. The game g is played repetitively an unbounded number of times. At each iteration,

a random k-tuple of agents play an instance of the game, where the members of this k-tuple

are selected with uniform distribution from the set of agents.

Every iteration of an n-k-g game represents some local interaction of k agents. Those agents

that play in a particular iteration of the game must choose the strategy they will use in this

interaction; an agent can use di�erent strategies in di�erent interactions. The outcome of

each iteration is represented by the payo� vector corresponding to the agents' joint strategy.

Intuitively, this payo� tells us how good the outcome of this joint behavior is from the point

of view of each agent. Many situations can be represented as an n-k-g game, for example,

the \tra�c" aspect of a multi-agent system can be represented by an n-k-g game, where

each time a number of agents meet at an intersection. Each such encounter is an instance

of a game in which agents can choose from a number of strategies, e.g., move ahead, yield.

The payo� function gives the utility to each set of strategies. For example, if each time only

two agents meet and both agents choose to move ahead, a collision occurs and their payo�s

are very low.

De�nition 3 A joint strategy of a game g is called e�cient if the sum of the players' payo�s

is maximal.

2. In this paper we use the term emergent behavior in its classical mathematical-economics interpretation:

an evolution of a behavior based on repetitive local interactions of (usually pairs of) agents, where each

agent may change its strategy for the following interactions based on the feedback it received in previous

interactions.
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Hence, e�ciency is one global criterion for judging the \goodness" of outcomes from the

system's perspective, unlike single payo�s which describe a single agent's perspective.

3

De�nition 4 Let s be a �xed joint strategy for a given game g, with payo� p

i

(s) for player

i; in an instance of g in which a joint strategy s

0

was played, if p

i

(s) � p

i

(s

0

) we say that

i's punishment w.r.t. s is p

i

(s) � p

i

(s

0

), and otherwise we say that its bene�t w.r.t. s is

p

i

(s

0

)� p

i

(s).

Hence, punishment and bene�t w.r.t. some joint strategy s measure the gain (bene�t) or

loss (punishment) of an agent if we can somehow change the joint behavior of the agents

from s to s

0

.

In our current discussion punishment and bene�t will always be with respect to a chosen

e�cient solution.

As designers of the multi-agent system, we would prefer it to be as e�cient as possible.

In some cases this entails behavior that is in some sense unstable, that is, individual agents

may locally prefer to behave di�erently. Thus, agents may need to be constrained to behave

in a way that is locally sub-optimal. We refer to such constraints that exclude some of the

possible behaviors as social laws .

Due to the symmetry of the system and under the assumption that the agents are

rational and their utility is additive (i.e., that the utility of two outcomes is the sum of their

utilities), it is clear that no agent's expected payo� can be higher than the one obtained

using the strategies giving the e�cient solution. Thus, it is clear that in this case an e�cient

solution is fair, in the sense that all agents can get at least what they could if no such law

existed, and no other solution can provide a better expected payo�.

However, the good intentions of the designer of creating an environment bene�cial to

the participating agents, may back�re. A social law provides information on the behavior

of agents conforming to it, information that other agents (or their respective designers) can

use to increase their expected payo�.

Example 1 Assume that we are playing an n-2-g game where g is the prisoner's dilemma,

represented in strategic form by the following matrix.

agent 2

agent 1 1 2

1 (2,2) (-10,10)

2 (10,-10) (-5,-5)

The e�cient solution of this game is obtained when both players play strategy 1. Assume

that this solution is chosen by the original designer, and is followed by all agents under its

control.

A designer of a new agent that will function in an environment in which the social law is

obeyed may be tempted to program her agent not to conform to the chosen law. Instead, he

will program the agent to play the strategy the maximizes its expected outcome, strategy

3. Addition of payo�s or utilities across agents is a dangerous practice. However, in our particular model, it

can be shown that a system in which joint-strategies are always e�cient maximizes each agent's expected

cumulative rewards.
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#2. This new agent will obtain a payo� of 10 when playing against one of the `good' agents.

Thus, even though the social law was accepted in order to guarantee a payo� of 2 to any

agent, `good' agents will obtain a payo� of -10 when playing against such non-conforming

agents. Note that the new designer exploits information on the strategies of `good' players,

as dictated by the social law. The agents controlled by the new designer are uncontcolable

agents; their behavior can not be dictated by the original designer.

Agents not conforming to the social law will be referred to as malicious agents . In order

to prevent the temptation to exploit the social law, we introduce a number of punishing

agents , designed by the initial designer, that will play `irrationally' if they detect behavior

not conforming to the social law, attempting to minimize the payo� of the malicious agents.

The knowledge that future participants have of the punishment policy would deter devia-

tions and eliminate the need for carrying it out. Hence, the punishing behavior is used as a

threat aimed at deterring other agents from violating the social law. This threat is (part of)

the control strategy adopted the controllble agents in order to inuence the behavior of the

unconrollable agents. Notice that this control strategy relies on the structural assumption

that the unconrollable agents are expected utility maximizers.

We de�ne the minimized malicious payo� as the minimal expected payo� of the mali-

cious players that can be guaranteed by the punishing agents. A punishment exists , if the

minimized malicious payo� is lower than the expected payo� obtained by playing according

to the social law. A strategy that guarantees the malicious agents an expected payo� lower

than the one obtained by playing according to the social law is called a punishing strategy .

Throughout this section and the following section we make the natural assumption that the

expected payo� of malicious agents when playing against each other is no greater than the

one obtained in the e�cient solution

4

.

Example 1 (continued) In Example 1, the punishment would simply be to play strategy

2 from now on. This may cause the payo� of a punishing agent to decrease, but would

guarantee that no malicious agent obtains a payo� better than -5 playing against a punishing

agent. If many non-malicious agents are punishing, the malicious agents' expected payo�

would decrease and become smaller then the payo� guaranteed by the social law. Strategy

2 would be the punishing strategy.

4. The Design of Punishments

In the previous section we described a general model of multi-agent interaction and showed

how the perspecive of partially controlled multi-agent systems leads to one possible solution

to the problem of enforcing social behavior in this setting, via the idea of threats and

punishments. We now proceed to examine the issue of punishment design.

We assume that there are p agents which the designer controls that either have an ability

to observe instances of the game that occur, or that can be informed as to the outcome of

games. There are c additional agents that conform with the law (that is, play the strategies

entailed by the chosen e�cient solution), and m malicious agents, that are not bound by

the law.

4. Other assumptions may be treated similarly.
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We would like to answer questions such as: Does a game o�er the ability to punish?

What is the minimized malicious payo�? What is the optimal ratio between p; c; and m?

Is there a di�erence between di�erent social laws?

Example 1 (continued) Consider Example 1 again. We have observed above that we can

cause an expected maximal loss for the malicious agents of 7 (= 2 � (�5)). This occurs

when the punishing agents play strategy 2. The gain that a malicious agent makes when

playing against an agent following the social law is 8 (= 10� 2). In order for a punishing

strategy to be e�ective, it must be the case that the expected payo� of a malicious agent

will be no greater than the expected payo� obtained when following the social law. In order

to achieve this, we must ensure that the ratio of punishing/conforming agents is such that a

malicious agent will have su�cient encounters with punishing agents. In our case, assuming

that when 2 deviators meet their expected bene�t is 0 and recalling that an agent is equally

likely to meet any other agent, we need

p

c

>

8

7

to make the incentive to deviate negative.

Implementing the punishment approach requires more complex behavior. Our agents

must be able to detect deviations as well as to switch to a new punishing strategy. This

whole behavior can be viewed as a new, more complex, social law. This calls for more

complex agents to carry it out, and makes the programming task harder.

Clearly, we would like to minimize the number of such complex agents, keeping the

bene�t of malicious behavior negative. Here, the major question is the ratio between the

bene�t of deviation and the prospective punishment.

As can be seen from the example, the larger the punishment, the smaller the number

of the more sophisticated punishing agents that is needed. Therefore, we would like to �nd

out which strategies minimize the malicious agent's payo�. In order to do this we require a

few additional de�nitions.

De�nition 5 A two person game g is a zero-sum game if for every joint strategy of the

players, the sum of the players' payo�s is 0.

Hence, in a zero-sum game, there are no win/win situations, the larger the payo� of one

agent, the smaller the payo� of the other agent. By convention, the payo� matrix of a two

person zero-sum game will mention only the payo�s of player 1.

De�nition 6 Let g be a two person game. Let P

g

i

(s,t) be the payo� of player i in g (where

i 2 f1; 2g) when strategies s and t are played by player 1 and 2 respectively. The projected

game, g

p

, is the following two person zero-sum game: The strategies of both players are as

in g, and the payo� matrix is P

g

p

(s; t) = �P

g

2

(s,t). De�ne the transposed game of g, g

T

,

to be the game g where the roles of the players change.

In the projected game, the �rst agent's payo� equals the negated value of the second agent's

payo� in the original game. Thus, this game reects the desire to lower the payo�s of the

second player in the original game.

We give a general result for a two-person game, g (with any number of strategies). We

make use of the following standard game-theoretic de�nition:
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De�nition 7 Given a game g, a joint strategy � for the players is a Nash equilibrium of

g if whenever a player takes an action that is di�erent than its action at �, its payo� given

that the other players play as in � is no higher than its payo� given that everybody plays �.

That is, a strategy � is a Nash equilibrium of a game if no agent can obtain a better payo�

by unilaterally changing its behavior when all the other agents play according to �.

Nash-equilibrium is the central notion in the theory of non-cooperative games (Luce &

Rai�a, 1957; Owen, 1982; Fudenberg & Tirole, 1991). As a result, this notion is well studied

and understood, and reducing new concepts to this basic concept may be quite useful from

a design perspective. In particular, Nash-equilibrium always exists for �nite games, and the

payo�s prescribed by any Nash-equilibria of a given zero-sum game are uniquely de�ned.

We can show:

Theorem 1 Given an n-2-g iterative game, the minimized malicious payo� is achieved by

playing the strategy of player 1 prescribed by the Nash equilibrium of the projected game g

p

,

when playing player 1 (in g), and the strategy of player 1 prescribed by the Nash equilibrium

of the projected game (g

T

)

p

, when playing player 2 (in g).

5

Proof: Assume that the punishing agent plays the role of player 1. If player 1 adopts the

strategy prescribed by a Nash-equilibrium � then player 2 can not get a better payo� than

the one guaranteed by � since each deviation by player 2 will not improve its situation (by

the de�nition of Nash-equilibrium). On the other hand, player 1 can not cause more harm

than the harm obtained by playing its strategy in �. To see this, assume that player 1 uses

an arbitrary strategy s, and that player 2 adopts the strategy prescribed by �. The outcome

for player 1 will be not higher than the one guaranteed by playing the Nash-equilibrium

(by the de�nition of Nash-equilibrium). In addition, due to the fact that we have here a

zero-sum game this implies that the outcome for player 2 will be no lower than the one

guaranteed if player 1 would play according to �. The case where the punishing agent is

player 2 is treated similarly.

Example 1 (continued) Continuing our prisoner's dilemma example, g

p

would be

agent 2

agent 1 1 2

1 -2 -10

2 10 5

with the Nash equilibrium attained by playing the strategies yielding 5. In this example,

(g

T

)

p

= g

p

. Therefore, the punishing strategies will be strategy # 2 for each case.

Corollary 1 Let n-2-g be an iterative game, with p punishing agents. Let v and v' be the

payo�s of the Nash equilibria of g

p

and g

T

p

respectively (which, in this case, are uniquely

de�ned). Let b,b' be the maximal payo�s player 1 can obtain in g and g

T

respectively,

5. Notice that, in both cases, the strategies prescribed for the original game are determined by the strategies

of player 1 in the Nash-Equilibria of the projected games.
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assuming player 2 is obeying the social law. Let e and e' be the payo�s of player 1 and 2,

respectively, in g, when the players play according to the e�cient solution prescribed by the

social law. Finally, assume that expected bene�t of two malicious agents when they meet

is 0. A necessary and su�cient condition for the existence of a punishing strategy is that

(n�1�p)

n�1

� (b+ b

0

)�

p

n�1

� (v + v

0

) < (e+ e

0

).

Proof: The expected payo� obtained by a malicious agent when encountering a law-

abiding agent is

b+b

0

2

, and its expected payo� when encountering a punishing agent is

�(v+v

0

)

2

.

In order to test the conditions for the existence of a punishing strategy we would need to

consider the best case scenario from the point of view of a malicious agent; in such a case all

non-punishing agents are law-abiding agents. In order to obtain the expected utility for a

malicious agent we have to make an average of the above quantities taking into account the

proportion of law-abiding and punishing agents in the population. This gives us that the

expected utility for a malicious agent is

(n�1�p)

2(n�1)

� (b+ b

0

)�

p

2(n�1)

� (v + v

0

). By de�nition,

a punishing strategy exists if and only if this expected utility is lower than the expected

utility guaranteed by the social law. Since the expected utility which can be guaranteed by

a social law is

e+e

0

2

, we get the desired result.

The value of the punishment,

(v+v

0

)

2

in the above, is independent of the e�cient solution

chosen, and e+e

0

is identical for all e�cient solutions, by de�nition. However, b+b

0

depends

on our choice of an e�cient solution. When a number of such solutions exist, minimizing

b+b

0

is an important consideration in the design of the social law, as it a�ects the incentive

to `cheat'.

Example 2 Let's look at a slightly di�erent version of the prisoner's dilemma. The game

matrix is

agent 2

agent 1 1 2

1 (0,0) (-10,10)

2 (10,-10) (-5,-5)

Here there are 3 e�cient solutions, given by the joint strategies (1,1), (1,2), (2,1). In

the case of (1,1) we have b+b'=20 (gained by playing strategy 2 instead of 1). In the case

of (2,1) and (1,2) b+b'=5.

Clearly, there is more incentive to deviate from a social law prescribing strategies (1,1)

than from a social law prescribing (2,1) or (1,2).

To summarize, the preceding discussion suggests designing a number of punishing agents,

whose behavior in punishment mode is prescribed by Theorem 1 in the case of n-2-g games.

By ensuring a su�cient number of such agents we take away any incentive to deviate from

the social laws. Hence, given that the malicious agents are rational, they will follow the social

norm, and consequently, there will be no need to utilize the punishment mechanism. We

observed that di�erent social laws leading to solutions that are equally e�cient have di�erent

properties when it comes to punishment design. Consequently, under the assumption that

we would like to minimize the number of punishing agents while guaranteeing an e�cient
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solution to the participants, we should choose an e�cient solution that minimizes the value

of b+ b

0

.

5. Embedded Teaching

In this section we move on to our second study of a PCMAS design problem; only now,

the uncontrollable agent is a reinforcement learner. This choice is not arbitrary; rational

agents and reinforcement learners are the two major types of agents studied in mathematical

economics, decision theory, and game theory. They are also the types of agents discussed

in work in DAI which is concerned with self-motivated agents (e.g., Zlotkin & Rosenschein,

1993; Kraus & Wilkenfeld, 1991; Yanco & Stein, 1993; Sen, Sekaran, & Hale, 1994).

An agent's ability to function in an environment is greatly a�ected by its knowledge of

the environment. In some special cases, we can design agents with su�cient knowledge for

performing a task (Gold, 1978), but, in general, agents must acquire information on-line

in order to optimize their performance, i.e., they must learn. One possible approach to

improving the performance of learning algorithms is employing a teacher. For example,

Lin (1992) uses teaching by example to improve the performance of agents, supplying them

with examples that show how the task can be achieved. Tan's work (1993) can also be

viewed as a form of teaching in which agents share experiences. In both methods some non-

trivial form of communication or perception is required. We strive to model a broad notion

of teaching that encompasses any behavior that can improve a learning agent's performance.

That is, we wish to conduct a general study of partially controlled multi-agent systems in

which the uncontrollable agent runs a learning algorithm. At the same time, we want our

model to clearly delineate the limits of the teacher's (i.e., the controlling agent's) ability to

inuence the student.

Here, we propose a teaching approach that maintains a situated \spirit" much like that

of reinforcement learning (Sutton, 1988; Watkins, 1989; Kaelbling, 1990), which we call

embedded teaching . An embedded teacher is simply a \knowledgeable" controlled agent

situated with the student in a shared environment. Her

6

goal is to lead the student to

adopt some speci�c behavior. However, the teacher's ability to teach is restricted by the

nature of the environment they share: not only is her repertoire of actions limited, but

she may also lack full control over the outcome of these actions. As an example, consider

two mobile robots without any means of direct communication. Robot 1 is familiar with

the surroundings, while Robot 2 is not. In this situation, Robot 1 can help Robot 2 reach

its goal through certain actions, such as blocking Robot 2 when it is headed in the wrong

direction. However, Robot 1 may have only limited control over the outcome of such an

interaction because of uncertainty about the behavior of Robot 2 and its control uncertainty.

Nevertheless, Robot 2 has a speci�c structure, it is a learner obeying some learning scheme,

and we can attempt to control it indirectly through our choice of actions for Robot 1.

7

6. To di�erentiate between teacher and student, we use female pronouns for the former and male pronouns

for the latter.

7. In general, the fact that an agent is controllable does not imply that we can perfectly control the outcome

of its actions, only their choice. Hence, a robot may be controllable in our sense, running a program

supplied by us, yet its move-forward command may not always have the desired outcome.
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In what follows, our goal is to understand how an embedded teacher can help a student

adopt a particular behavior. We address a number of theoretical questions relating to

this problem, and then we experimentally explore techniques for teaching two types of

reinforcement learners.

6. A Basic Teaching Setting

We consider a teacher and a student that repeatedly engage in some joint activity. While

the student has no prior knowledge pertaining to this activity, the teacher understands its

dynamics. In our model, the teacher's goal is to lead the student to adopt a particular

behavior in such interactions. For example, teacher and student meet occasionally at the

road and the teacher wants to teach the student to drive on the right side. Or perhaps, the

teacher and the student share some resource, such as CPU time, and the goal is to teach

him judicious use of this resource. We model such encounters as 2-2-g iterative games.

To capture the idea that the teacher is more knowledgeable than the student, we assume

that she knows the structure of the game, i.e., she knows the payo� function, and that she

recognizes the actions taken at each play. On the other hand, the student does not know the

payo� function, although he can perceive the payo� he receives. In this paper, we make the

simplifying assumptions that both teacher and student have only two actions from which

to choose and that the outcome depends only on their choice of actions. Furthermore,

excluding our study in Section 8.4, we ignore the cost of teaching, and hence, we omit the

teacher payo� from our description.

8

This provides a basic setting in which to take this

�rst step towards understanding the teaching problem.

9

The teaching model can be concisely modeled by a 2� 2 matrix. The teacher's actions

are designated by I and II , while the student's actions are designated by the numbers 1

and 2. Each entry corresponds to a joint action and represents the student's payo� when

this joint action is played. We will suppose that we have matrix A of Figure 1, and that we

wish to teach the student to use action 1. At this stage, all we assume about the student is

that if he always receives a better payo� following action 1 he will learn to play it.

We can see that in some situations teaching is trivial. Assume that the �rst row domi-

nates the second row, i.e., a > c and b > d. In that case, the student will naturally prefer to

take action 1, and teaching is not very challenging, although it might be useful in speeding

the learning process. For example, if a� c > b� d, as in matrix B in Figure 1, the teacher

can make the advantage of action 1 more noticeable to the student by always playing action

I .

Now suppose that only one of a > c or b > d holds. In this case, teaching is still easy.

We use a basic teaching strategy, which we call preemption. In preemption the teacher

chooses an action that makes action 1 look better than action 2. For example, when the

situation is described by matrix C in Figure 1, the teacher will always choose action I .

8. A case could be made for the inherent value of teaching, but this may not be the appropriate forum for

airing these views.

9. In fact, our idea has been to consider the most basic embedded teaching setting which is already chal-

lenging. As we later see, this basic setting is closely related to a fundamental issue in non-cooperative

games.
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I II

1 a b

2 c d

(A)

I II

1 6 5

2 1 2

(B)

I II

1 5 1

2 2 6

(C)

I II

1 3 -2

2 5 6

(D)

I II

1 5 -10

2 10 -5

(E)

Figure 1: Game matrices A, B, C, D, and E. The teacher's possible actions are I and II ,

and the student's possible actions are 1 and 2.

Next, assume that both c and d are greater than both a or b, as in matrix D in Figure 1.

Regardless of which action the teacher chooses, the student receives a higher payo� by

playing action 2 (since minf5; 6g > maxf3;�2g). Therefore, no matter what the teacher

does, the student will learn to prefer action 2. Teaching is hopeless in this situation.

All other types of interactions are isomorphic to the case where c > a > d > b, as in

matrix E in Figure 1. This is still a challenging situation for the teacher because action 2

dominates action 1 (because 10 > 5 and �5 > �10). Therefore, preemption cannot work.

If a teaching strategy exists, it will be more complex than always choosing the same action.

Since this seems to the most challenging teaching situation, we devote our attention to

teaching a reinforcement learner to choose action 1 in this class of games.

It turns out that the above situation is quite important in game-theory and multi-agent

interaction. It is a projection of a very famous game, the prisoner's dilemma, discussed

in the previous sections. In general, we can represent the prisoner's dilemma using the

following game matrix:

teacher

student Coop Defect

Coop (a,a) (b,c)

Defect (c,b) (d,d)

or more commonly

teacher

student Coop Defect

Coop (a,a) (-c,c)

Defect (c,-c) (d,d)

where c > a > d > b. The actions in the prisoner's dilemma are called Cooperate (Coop)

and Defect; we identify Coop with actions 1 and I , and Defect with actions 2 and II . The

prisoner's dilemma captures the essence of many important social and economic situations;

in particular, it encapsulates the notion of cooperation. It has thus motivated enormous dis-

cussion among game-theorists and mathematical economists (for an overview, see Eatwell,

Milgate, & Newman, 1989). In the prisoner's dilemma, whatever the choice of one player,

the second player can maximize its payo� by playing Defect. It thus seems \rational" for

each player to defect. However, when both players defect, their payo�s are much worse than

if they both cooperate.

489



Brafman & Tennenholtz

As an example, suppose two agents will be given $10 each for moving some object. Each

agent can perform the task alone, but it will take an amount of time and energy which they

value at $20. However, together, the e�ort each will make is valued at $5. We get the

following instance of the prisoner's dilemma:

Agent 1

Agent 2 Move Rest

Move (5,5) (-10,10)

Rest (10,-10) (0,0)

In the experimental part of our study, the teacher's task will be to teach the student

to cooperate in the prisoner's dilemma. We measure the success of a teaching strategy by

looking at the cooperation rate it induces in students over some period of time, that is, the

percentage of the student's actions which are Coop. The experimental results presented in

this paper involving the prisoner's dilemma are with respect to the following matrix:

Teacher

Student Coop Defect

Coop (10,10) (-13,13)

Defect (13,-13) (-6,-6)

We have observed qualitatively similar results in other instantiations of the prisoner's

dilemma, although the precise cooperation rate varies.

7. Optimal Teaching Policies

In the previous section we concentrated on modeling the teaching context as an instance

of a partially controlled multi-agent system, and determining which particular problems

are interesting. In this section we start exploring the question of how a teacher should

teach. First, we de�ne what an optimal policy is. Then, we will de�ne Markov decision

processes (MDP) (Bellman, 1962), and show that under certain assumptions teaching can be

viewed as an MDP. This will allow us to tap into the vast knowledge that has accumulated

on solving these problems. In particular, we can use well known methods, such as value

iteration (Bellman, 1962), to �nd the optimal teaching policy.

We start by de�ning an optimal teaching policy. A teaching policy is a function that

returns an action at each iteration; possibly, it may depend on a complete history of the

past joint actions. There is no \right" de�nition for an optimal policy, as the teacher's

motivation may vary. However, in this paper, the teacher's objective is to maximize the

number of iterations in which the student's action are \good", such as Coop in the prisoner's

dilemma. The teacher does not know the precise number of iterations she will be playing,

so she slightly prefers earlier success to later success.

This is formalized as follows: Let u(a) be the value the teacher places on a student's

action, a, let � be the teacher's policy, and assume that it induces a probability distribution

Pr

�;k

over the set of possible student actions at time k. We de�ne the value of the strategy

� as

val(�) =

1

X

k=0



k

E

k

(u)
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where E

k

(u) is the expected value of u:

E

k

(u) =

X

a2A

s

Pr

�;k

(a) � u(a)

Here, A

s

is the student's set of actions. The teacher's goal is to �nd a strategy � that

maximizes val(�), the discounted expected value of the student's actions. For example, in

the case of the prisoner's dilemma, we could have

A

s

= fCoop,Defectg and u(Coop) = 1 and u(Defect) = 0.

Next, we de�ne MDPs. In an MDP, a decision maker is continually moving between

di�erent states. At each point in time she observes her current state, receives some payo�

(which depends on this state), and chooses an action. Her action and her current state

determine (perhaps stochastically) her next state. The goal is to maximize some function

of the payo�s. Formally, an MDP is a four-tuple hS;A; P; ri, where S is the state-space, A

is the decision-maker's set of possible actions, P : S � S � A ! [0; 1] is the probability of

a transition between states given the decision-maker's action, and r : S ! < is the reward

function. Notice that given an initial state s 2 S, and a policy of the decision maker �, P

induces a probability distribution P

s;�;k

over S, where P

s;�;k

(s

0

) is the probability that the

k

th

state obtained will be s

0

if the current state is s.

The 

0

-optimal policy in an MDP is the policy that maximizes at each state s the

discounted sum of the expected values of the payo�s received at all future states, starting

at s, i.e.,

1

X

k=0



k

0

(

X

s

0

2S

P

s;�;k

(s

0

) � r(s

0

))

Although it may not be immediately obvious, a single policy maximizing discounted sums

for any starting state exists, and there are well-known ways of �nding this policy. In the

experiments below we use a method based on value-iteration (Bellman, 1962).

Now suppose that the student can be in a set � of possible states, that his set of actions

is A

s

, and that the teacher's set of actions is A

t

. Moreover, suppose that the following

properties are satis�ed:

(1) The student's new state is a function of his old state and the current joint-action,

denoted by � : ��A

s

�A

t

! �;

(2) The student's action is a stochastic function of his current state, where the probability

of choosing a at state s is �(s; a);

(3) the teacher knows the student's state. (The most natural way for this to happen is that

the teacher knows the student's initial state, the function � , and the outcome of each game,

and she uses them to simulate the agent.)

Notice that under these assumptions a teaching policy should be a function of �: We

know that the student's next action is a function of his next state. We know that the

student's next state is a function of his current state, his current action, and the teacher's

current action. Hence, his next action is a function of his current state and action, as

well as the teacher's current action. However, we know that the student's current action

is a function of his current state. Hence, the student's next action is a function of his

current state and the teacher's current action. This implies that the only knowledge the

teacher needs to optimally choose her current action is the student's current state, and any
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additional information will be redundant and cannot improve her success. More generally,

when we repeat this line of reasoning inde�nitely into the future, we see that the teacher's

policy should be a function of the student's state: a function from � to A

t

. It is now

possible to see that we have the makings of the following MDP.

Given this observation and our three assumptions, we see that, indeed, the teacher's

policy induces a probability distribution over the set of possible student actions at time k.

This implies that our de�nition of val makes sense here.

De�ne the teacher's MDP to be TMDP= h�; A

t

; P; Ui, where

P (s; s

0

; a

t

)

def

=

X

a

s

2A

s

�(s; a

s

) � �

s

0

;�(s;a

s

;a

t

)

(�

i;j

is de�ned as 1 when i = j, and 0 otherwise). That is, the probability of a transition

from s to s

0

under a

t

is the sum of probabilities of the student's actions that will induce

this transition. The reward function is the expected value of u:

U(s)

def

=

X

a

s

2A

s

�(s; a

s

) � u(a

s

)

Theorem 2 The optimal teaching policy is given by the 

0

optimal policy in TMDP.

Proof: By de�nition, the 

0

optimal policy in TMDP is the policy � that for each s 2 �

maximizes

1

X

k=0



k

0

(

X

s

0

2�

P

s;�;k

(s

0

) � U(s

0

))

that is,

1

X

k=0



k

0

(

X

s

0

2�

P

s;�;k

(s

0

) � (

X

a

s

2A

s

�(s

0

; a

s

) � u(a

s

)))

However, this is equal to

(�)

1

X

k=0



k

0

X

a

s

2A

s

X

s

0

2�

�(s

0

; a

s

) � P

s;�;k

(s

0

) � u(a

s

)

We know that P

s;�;k

(s

0

) is the probability that s

0

will be the state of the student in time

k, given that the teacher uses � and that her current state is s. Hence,

X

s

0

2�

�(s

0

; a

s

) � P

s;�;k

(s

0

)

is the probability that a

s

will be the action taken by the student at time k given the initial

(current) state is s. Upon examination, we see now that (*) is identical to val(�).

The optimal policy can be used for teaching, when the teacher possess su�cient infor-

mation to determine the current state of the student. But even when that is not the case, it

allows us to calculate an upper bound on the success val(�) of any teaching policy �. This

number is a property of the learning algorithm, and measures the degree of inuence any

agent can have over the given student.
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8. An Experimental Study

In this section we describe an experimental study of embedded teaching. First, we de�ne the

learning schemes considered, and then, we describe a set of results obtained using computer

simulations.

8.1 The Learning Schemes

We experiment with two types of students: One uses a reinforcement learning algorithm

which can be viewed as Q-learning with one state, and the other uses Q-learning. In choosing

parameters for these students we tried to emulate choices made in the reinforcement learning

literature.

The �rst student, which we call a Blind Q-learner (BQL), can perceive rewards, but

cannot see how the teacher has acted or remember his own past actions. He only keeps

one value for each action, for example, q(Coop) and q(Defect) in the case of the prisoner's

dilemma. His update rule is the following: if he performed action a and received a reward

of R then

q

new

(a) = (1� �) � q

old

(a) + � �R

The parameter �, the learning-rate, is �xed (unless stated otherwise) to 0:1 in our exper-

iments. We wish to emphasize that although BQL is a bit less sophisticated than \real"

reinforcement learners discussed in the AI literature (which is de�ned below), it is a popu-

lar and powerful type of learning rule, which is much discussed and used in the literature

(Narendra & Thathachar, 1989).

The second student is a Q-learner (QL). He can observe the teacher's actions and has

a number of possible states. The QL maintains a Q-value for each state-action pair. His

states encode his recent experiences, i.e., the past joint actions. The update rule is:

q

new

(s; a) = (1� �) � q

old

(s; a) + � � (R+ V (s

0

))

Here R is the reward received upon performing a at state s; s

0

is the state of the student

following the performance of a at s;  is called the discount factor, and will be 0:9, unless

otherwise noted; and V (s

0

) is the current estimate of the value of the best policy on s

0

,

de�ned as max

a2A

s

q(s

0

; a). All Q-values are initially set to zero.

The student's update rule tells us how his Q-values change as a result of new experi-

ences. We must also specify how these Q-values determine his behavior. Both QL and

BQL students choose their actions based on the Boltzmann distribution. This distribution

associates a probability P

s

(a) with the performance of an action a at a state s (P (a) for

the BQL).

P

s

(a)

def

=

exp(q(s; a)=T )

P

a

0

2A

exp(q(s; a

0

)=T )

(QL) P (a)

def

=

exp(q(a)=T )

P

a

0

2A

exp(q(a

0

)=T )

(BQL)

Here T is called the temperature. Usually, one starts with a high value for T , which

makes the action choice more random, inducing more exploration on the part of the student.

T is slowly reduced, making the Q-values play a greater role in the student's choice of action.

We use the following schedule: T (0) = 75 and T (n+1) = T (n)�0:9+0:05. This schedule has

the characteristic properties of fast initial decay and slow later decay. We also experiment

with �xed temperature.
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Figure 2: Fraction of Coops as a function of temperature for the approximately optimal

policy (left) and for \teaching" using an identical Q-learner (right). Each curve

corresponds to Coop rate over some �xed number of iterations. In the approx.

optimal policy the curves for 1000, 5000 and 10000 iterations are nearly identical.

8.2 Blind Q-Learners

Motivated by our discussion in Section 6 we will concentrate in this section and in the

following section on teaching in the context of the prisoner's dilemma. In Section 8.4 we

discuss another type of teaching setting. This section describes our experimental results

with BQL. We examined a policy that approximates the optimal policy, and two teaching

methods that do not rely on a student model.

8.2.1 Optimal Policy

First we show that BQLs �t the student model of Section 7. For their state space, we use

the set of all possible assignment for their Q-values. This is a continuous subspace of <

2

,

and we discretize it (in order to be able to compute a policy), obtaining a state space with

approximately 40,000 states. Next, notice that transitions are a stochastic function of the

current state (current Q-values) and the teacher's action. To see this notice that Q-value

updates are a function of the current Q-value and the payo�; the payo� is a function of the

teacher's and student's actions; and the student's actions are a stochastic function of the

current Q-value. In the left side of Figure 2 we see the success of teaching using the policy

generated by using dynamic programming to solve this optimization problem. Each curve

represents the fraction of Coops as a function of the temperature for some �xed number of

iterations. The values are means over 100 experiments.

8.2.2 Two Q-Learners

We also ran experiments with two identical BQLs. This can be viewed as \teaching" using

another Q-learner. The results are shown in the right side of Figure 2. At all temperatures

the optimal strategy performs better than Q-learning as a \teaching" strategy. The fact that

at temperatures of 1.0 or less the success rate approaches 1 will be bene�cial when we later

add temperature decay. However, we also see that there is an inherent limit to our ability
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Figure 3: Fraction of Coops as a function of temperature for the teaching strategy based

on TFT (left) and 2TFT (right).

to a�ect the behavior at higher temperatures. An interesting phenomenon is the phase

transition observed around T = 2:5. A qualitative explanation of this phenomenon is that

high temperature adds randomness to the student's choice of action, because it makes the

probabilities P (a) less extreme. Consequently, the ability to predict the student's behavior

lessens, and with it the probability of choosing a good action. However, while randomness

serves to lower the success rate initially, it also guarantees a level of e�ective cooperation,

which should approach 0.5 as the temperature increases. Finally, notice that although

(Coop,Coop) seems like the best joint-action for a pair of agents, two interacting Q-learners

never learn to play this joint strategy consistently, although they approach 80% Coops at

low temperatures.

8.2.3 Teaching Without a Model

When the teacher does not have a precise model of the student, we cannot use the techniques

of Section 7 to derive an optimal policy; in these models, we assume that the teacher

can \observe" the student's current state (i.e. that it knows the student's Q-values). We

therefore explore two teaching methods that only exploit knowledge of the game and the

fact that the student is a BQL.

Both methods are motivated by a basic strategy of countering the student's move. The

basic idea is to try and counter good actions by the student with an action that will lead

to a high payo�, and to counter bad actions with an action that will give him a low payo�.

Ideally, we would like to play Coop when the student plays Coop, and Defect when the

student plays Defect. Of course, we don't know what action the student will choose, so we

try to predict from his past actions.

If we assume that the Q-values change very little from one iteration to the other, the

student's most likely action in the next game is the same action that he took in the most

recent game. Therefore, if we saw the student play Coop in the previous turn, we will play

Coop now . Similarly, the teacher will follow a Defect by the student with a Defect on her
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Figure 4: Fraction of Coops as a function of time for BQL using the temperature decay

scheme of Section 8.1. Teaching strategies shown: approximately optimal strat-

egy, Q-learning, TFT, and 2TFT.

part. This strategy, called Tit-For-Tat (TFT for short), is well known (Eatwell et al., 1989).

Our experiments show that it is not very successful in teaching a BQL (see Figure 3).

We also experimented with a variant of TFT, which we call 2TFT. In this strategy the

teacher plays Defect only after observing two consecutive Defects on the part of the student.

It is motivated by our observation that in certain situations it is better to let the student

enjoy a free lunch (that is, match his Defect with a Coop) than to make Coop look bad

to him, because that may cause his Q-value for Coop to be so low that he is unlikely to

try it again. Two consecutive Defects indicate that the probability of the student playing

Defect next is quite high. The results, shown in Figure 3, indicate that this strategy worked

better than TFT, and in some ranges of temperature, better than Q-learning. However, in

general, both TFT and 2TFT gave disappointing results.

10

Finally, Figure 4 shows the performance of all four teaching strategies discussed so

far when we incorporate temperature decay. We can see that the optimal policy is very

successful. As we explained before, teaching is easier when the student is more predictable,

which is the case when temperature is lower. With temperature decay the student spends

most of his time in relatively low temperature and behaves similarly to the case of �xed,

low temperature. While an initial high-temperature phase could have altered this behavior,

we did not observe such e�ects.

8.3 Teaching Q-Learners

Unlike BQL, Q-learners (QL) have a number of possible states which encode the joint actions

of previous games played. A QL with memory one has four possible states, corresponding

to the four possible joint actions in the prisoner's dilemma; a QL with more memory will

have more states, encoding a sequence of joint actions.

More complex learning architectures have more structure, which brings with it certain

problems. One possible problem may be that this structure is more \teaching-resistant." A

10. In some sense the use of an identical Q-learner implies having a model of the student, while TFT and

2TFT do not make use of such a model.
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Figure 5: Each curve shows the fraction of Coops of QL as a function of temperature for a

�xed number of iterations when TFT was used to teach (left) and when an iden-

tical Q-learner was used to teach (right). Values are means over 100 experiments.

more real threat is added computational complexity. As we mentioned, to approximate the

optimal teaching policy for BQL we had to compute over a space of approximately 40,000

discretized states. While representing the state of a BQL requires only two numbers, one

for each Q-value, representing the state of a QL with m states requires 2m + 1 numbers:

one for the Q-value of each state/action pair, and one encoding the current state. The size

of the corresponding discretized state-space for the teacher's Markov decision process grows

exponentially in m. For the simplest case of memory one (a student with four states) this

would be about 10

18

states. Since solving the problem with 40,000 states took 12 hours

on a sun sparcstation-10, we were not able to approximate optimal teaching policies for

even the simplest QL.

But all is not lost. More structure may mean more complexity, but it also means more

properties to exploit. We can reach surprisingly good results by exploiting the structure of

Q-learners. Moreover, we can do this using a teaching method introduced in the previous

section. However, in QL this method takes on a new meaning that suggests the familiar

notions of reward and punishment. Interestingly, one may recall that punishment has been

our major tool in our approach to the enforcement of social behavior.

In choosing their actions, QLs \care" not only about immediate rewards, but also about

the current action's e�ect on future rewards. This makes them suitable for a reward and

punishment scheme. The idea is the following: suppose the QL did something \bad" (Defect

in our case). Although we cannot reliably counter such a move with a move that will lower

his reward, we can punish him later by choosing an action that always gives a negative

payo�, no matter what the student plays. We achieve this by following a student's Defect

with a Defect by the teacher. While the immediate reward obtained by a QL playing Defect

may be high, he will also learn to associate a subsequent punishment with the Defect action.

Thus, while it may be locally bene�cial to perform Defect, we may be able to make the

long-term rewards of Defect less desirable. Similarly, we can follow a student's Coop with

a reward in the form of a Coop by the teacher, since it guarantees a positive payo� to the

student.
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Figure 6: Fraction of Coops of QL as a function of time with temperature decay with TFT

and with Q-learning as teaching strategies.

This suggests using Tit-For-Tat again. Notice that for BQLs, TFT cannot be understood

as a reward/punishment strategy because BQLs care only about the immediate outcome of

an action; the value they associate with each action is a weighted average of the immediate

payo�s generated by playing this action.

In Figure 5 we see the success rates of TFT as a function of temperature, as well as the

rates for Q-learning as a teaching strategy. In this latter case, the teacher is identical to the

student. It is apparent that TFT is extremely successful, especially in higher temperatures.

Interestingly, the behavior is quite di�erent than that of two QLs. Indeed, when we examine

the behavior of two QLs, we see that, to a lesser extent, the phase change noticed in

BQLs still exists. We obtain completely di�erent behavior when TFT is used: Coop levels

increase with temperature, reaching almost 100% above 3.0. Hence, we see that TFT works

better when the student Q-learner exhibits a certain level of experimentation. Indeed, if

we examine the success of these teaching strategies at a very low temperature, we see that

Q-learning performs better than TFT. This explains the behavior of TFT and QL when

temperature decay is introduced, as described in Figure 6. In this �gure, QL seems to be

more e�ective than TFT. This is probably a result of the fact that in this experiment the

student's temperature is quite low most of the time.

In these experiments the QL remembers only the last joint action. We experimented with

QL with more memory and performance was worse. This can be explained as follows. For a

QL with memory one or more, the problem is a fully observable Markov decision process once

the teacher plays TFT, because TFT is a deterministic function of the previous joint action.

We know that Q-learning converges to the optimal policy under such conditions (Watkins &

Dayan, 1992). Adding more memory e�ectively adds irrelevant attributes, which, in turn,

causes a slower learning rate. We have also examined whether 2TFT would be successful

when agents have a memory of two. The results are not shown here, but the success rate

was considerably lower than for TFT, although better than for two QLs.

TFT performed well as a teaching strategy, and we explained the motivation for using it.

We now want to produce a more quantitative explanation, one that can be used to predict

its success when we vary various parameters, such as the payo� matrix.
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Figure 7: Coop rates as a function of DIF = a+b+(a+c)� (c+d+(b+d)). The means

are for 100 experiments, 10000 iterations each. Student's memory is 1.

Let the student's payo� matrix be as in matrix A of Figure 1; let p be the probability

that the student plays Coop, and let q = 1 � p be the probability that the student plays

Defect. These probabilities are a function of the student's Q-values (see the description in

Section 8.1). Let us assume that the probabilities p and q do not change considerably from

one iteration to the next. This seems especially justi�ed when the learning rate, �, is small.

Given this information, what is the student's expected reward for playing Coop? In

TFT, the teacher's current action is the student's previous action, so we can also assume

that the teacher will play Coop with probability p. Thus, the student's expected payo� for

playing Coop is (p � a+ q � b). Since Q-learners care about their discounted future reward

(not just their current reward), what happens next is also important. Since we assumed

that the student cooperated, the teacher will cooperate in the next iteration, and if we still

assume p to be the probability that the student will cooperate next, the student's expected

payo� in the next step is (p �a+q �c). If we ignore higher order  terms the expected reward

of playing Coop becomes: p �a+ q � b+(p �a+ q � c): The expected reward of Defect is thus:

p � c+ q � d+ (p � b+ q � d): Therefore, TFT should succeed as a teaching strategy when:

p � a+ q � b+ (p � a+ q � c) > p � c+ q � d+ (p � b+ q � d):

Since initially p = q = 0:5, and it is the behavior at the stage where p and q are approx-

imately equal that will determine whether TFT succeeds, we can attempt to predict the

success of TFT based on whether:

DIF = a+ b+ (a+ c)� [(c+ d+ (b+ d))] � 0

To test this hypothesis we ran TFT on a number of matrices using Q-learners with di�erent

discount factors. The results in Figure 7 show the fraction of Coops over 10000 iterations

as a function of DIF for a teacher using TFT, and with temperature decay. We see that

DIF is a reasonable predictor of success. When it is below 0, almost all rates are below

20%, and above 8 most rates are above 65%. However, between 0 and 8 it is not successful.
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8.4 Teaching as a Design Tool

In Section 6 we identi�ed a class of games that are challenging to teach, and the previous

sections were mostly devoted to exploring teaching strategies in these games when the

student is a Q-learner. One of the assumptions we made was that the teacher is trying to

optimize some function of the student's behavior and does not care what she has to do in

order to achieve this optimal behavior. However, often the teacher would like to maximize

some function that depends both on her behavior and on the student's behavior. When

this is the case, even the more simple games discussed in Section 6 pose a challenge.

In this section, we examine a basic coordination problem, block pushing, in which our

objective is not teaching, but where teaching is essential for obtaining good results. Our

aim in this section is to demonstrate this point, and hence the value of understanding

embedded teaching. Our results show that there is a teaching strategy that achieves much

better performance than a naive teaching strategy and leads to behavior that is much better

than that of two reinforcement learners.

Consider two agents that must push a block as far as possible along a given path in

the course of 10,000 time units. At each time unit each agent can push the block along

the path, either gently (saving its energy) or hard (spending much energy). The block will

move in each iteration c � x � h+ (2� x) � h units in the desired direction, where h; c > 0 are

constants and x is the number of agents which push hard. At each iteration, the agents are

paid according to the distance the block was pushed. Naturally, the agents wish to work as

little as possible while being paid as much as possible, and the payo� in each iteration is a

function of the cost of pushing and the payment received. We assume that each agent prefers

that the block will be pushed hard by at least one of the agents (guaranteeing reasonable

payment), but each agent also prefers that the other agent will be the one pushing hard. If

we denote the two actions by gentle and hard, we get that the related game can be described

as follows:

hard gentle

hard (3,3) (2,6)

gentle (6,2) (1,1)

Notice that the above game falls into the category of games where teaching is easy. If

all the teacher cares about is that the student will learn to push hard, she will simply push

gently. However, when the teacher is actually trying to maximize the distance in which the

block moved, this teaching strategy may not be optimal. Notice that there can be at most

20000 instances of hard push; the naive teaching strategy mentioned above will yield no

more than 10000 instances of hard push. In order to increase the number, we need a more

complex teaching strategy.

In the results below we use BQL with � = 0:001. Consider the following strategy for

the teacher: push gently for K iterations, and then start to push hard. As we will see, by

a right selection of K, we obtain the desired behavior. Not only will the student push hard

most of the time, but the total number of hard push instances will improve dramatically.

In Figure 8, the x coordinate corresponds to the parameter K, while the Y coordinate

corresponds to the number of hard push instances which occur in 10000 iterations. The

results obtained are average results for 50 trials.

500



On Partially Controlled Multi-Agent Systems

2000 4000 6000 8000

11000

12000

13000

14000

15000

16000

17000

Figure 8: Teaching to push hard: number of hard push instances by the student in 10000

iterations as a function if the number of iterations in which the teacher does not

push hard (avg. over 50 trials).

As we can see from Figure 8, the e�ciency of the system is non-monotonic in the

threshold K. The behavior we obtain with an appropriate selection of K is much better

than what we would have obtained with the naive teaching strategy. It is interesting to

note the existence of a sharp phase transition in the performance at the neighborhood of

the optimal K. Finally, we mention that when both agents are reinforcement learners, we

get only 7618 instances of \push hard", which is much worse than what is obtained when

we have a knowledgeable agent that utilizes its knowledge to inuence the behavior of the

other agent.

9. Towards A General Theory

The two case studies presented in this paper raise the natural question of whether general,

domain independent techniques for PCMAS design exist, and whether we have learned

about such tools from our case studies. We believe that it is still premature to say whether

a general theory of PCMAS design will emerge; this requires much additional work. Indeed,

given the considerable di�erences that exist between the two domains explored in this

paper, and given the large range of multi-agent systems and agents that can be envisioned,

we doubt the existence of common low-level techniques for PCMAS design. Even within

the class of rational agents which we investigated, agents can di�er considerably in their

physical, computational, and memory capabilities, and in their approach to decision making

(e.g., expected utility maximization, maximization of worst-case outcomes, minimization of

regret). Similarly, the problem of social-law enforcement can take on di�erent forms, for

example, the malicious agents could cooperate among each other. However, once a more

abstract view is taken, certain important unifying concepts appear, namely, punishment

and reward.

Punishment and reward are abstract descriptions of two types of high-level feedbacks

that the controllable agents can provide to the uncontrollable agents. Although punishment

and reward take di�erent form and meaning in the two domains, in both cases, the uncon-
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trollable agents seem to \care" about the controllable agent's reaction to their action. What

we see is that in both cases, the controllable agents can inuence the uncontrollable agents'

perception of the worthiness of their actions. The precise manner in which the controllable

agents a�ect this perception di�ers, but in both cases it utilizes some inherent aspect of

uncertainty in the uncontrollable agent's world model. In the case of rational agents, despite

their perfect knowledge of the dynamics of the world, uncertainty remains regarding the

outcome of the non-malicious agents' actions. By �xing a certain course of action for the

controllable agents, we inuence the malicious agents' perception of the outcome of their

own actions. In the case of the learning agent, one can a�ect the perception of the student's

action by a�ecting its basic world model. Hence, it seems that a high-level approach for PC-

MAS design has two stages: First, we analyze the factors that inuence the uncontrollable

agent's perception of their actions. Next, we analyze our ability to control these factors. In

retrospect, this has been implicit in our approach. In our study of social-law enforcement,

we used the projected game to �nd out how an agent's perception of an action can be

changed and used the indirect mechanism of threats to enforce the perception we desired.

In our study of embedded teaching, we started with an analysis of di�erent games and the

possibility of a�ecting an agent's perception of an action in these games. Next, we tried

to provide this perception. In the case of BQL students, our controllable teacher did not

have complete control over the elements that determine the student's perception because

of the random nature of the student's action. Yet, she did try to somehow a�ect them. In

the case of the Q-learners, direct control was not available over all factors determining the

student's perception. Yet, the teacher could control some aspects of this perception, which

were found to be su�cient.

One might ask how representative our studies are of general PCMAS domains, and

therefore, how relevant is the insight they may provide. We have chosen these two domains

with the belief that they represent key aspects of the types of agents studied in AI. In

AI, we study dynamic agents that act to improve their state. These agents are likely to

use information to revise their assessment of the state of the world, much like the learning

agents, and will need to make decisions based on their current information, much like the

expected utility maximizers we have studied. Hence, typical multi-agent systems studied in

AI include agents that exhibit one or both of these properties.

While punishment and rewards provide the conceptual basis for designing the control-

lable agents, MDPs supply a natural model for many domains. In particular, MDPs are

suitable when uncertainty exists, stemming either from the other agents' choices or from

nature. As we showed in Section 7, at least in principle, we can use established techniques to

obtain strategies for the controllable agents when the problem can be phrased as a Markov

decision process. Using the MDP perspective in other cases would require more sophisti-

cates tools and a number of important challenges must be met �rst: (1) The assumptions

that the agent's state is fully observable and that the environment's state is fully observable

is unrealistic in many domains. When these assumptions are invalid, we obtain a partially

observable Markov decision process (POMDP) (Sondik, 1978). Unfortunately, although

POMDPs can be used in principle to obtain the ideal policy for our agents, current tech-

niques for solving POMDPs are limited to very small problems. Hence, in practice one will

have to resort to heuristic punishment and reward strategies. (2) In Section 7 we had only
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one controlling agent. This poses a natural challenge of generalizing tools and techniques

from MDPs to distributed decision making processes.

10. Summary and Related Work

This paper introduces the distinction between controllable and uncontrollable agents and the

concept of partially controlled multi-agent systems. It provides two problems in multi-agent

system design that naturally fall into the framework of PCMAS design and suggests concrete

techniques for inuencing the behavior of the uncontrollable agents in these domains. This

work contributes to AI research by introducing and exploring a promising perspective on

system design and it contributes to DES research by considering two types of structural

assumptions on agents, corresponding to rational and learning agents.

The application of our approach to the enforcement of social behavior introduces a new

tool in the design of multi-agent systems, punishment and threats. We used this notion and

investigated it as part of an explicit design paradigm. Punishment, deterrence, and threats

have been studied in political science (Dixit & Nalebu�, 1991; Schelling, 1980); yet, in

di�erence to that line of work (and its related game-theoretic models), we consider the case

of a dynamic multi-agent system and concentrate on punishment design issues, such as the

question of minimizing the number of reliable agents needed to control the system. Unlike

much work in multi-agent systems, we did not assume all agents to be rational or all agents

to be law-abiding. Rather, we only assumed that the designer can control some of the agents

and that deviations from the social laws by the uncontrolled agents need to be rational.

Notice that the behavior of controllable agents may be considered irrational in some cases;

however, it will eventually lead to desired behavior for all the agents. Some approaches

to negotiations can be viewed as incorporating threats. In particular, Rosenschein and

Genesereth (1985) consider a mechanism making deals among rational agents, where agents

are asked to o�er a joint strategy to be followed by all agents and declare the move they

would take if there will be no agreement on the joint strategy. This latter move can be viewed

as a threat describing the implications of refusing the agent's suggested joint strategy. For

example, in the prisoner's dilemma setting an agent may propose joint cooperation and

threaten defecting otherwise. The work in the �rst part of this paper could be viewed

as examining how such a threat could be credible and e�ective in a particular context of

iterative multi-agent interactions.

As part of our study, we proposed embedded teaching as a situated teaching paradigm

suitable for modeling a wide range of teaching instances. We modeled the teacher and

the student as players in an iterated two-player game. We concentrated on a particular

iterative game, which we showed to be the most challenging game of its type. In our model,

the dynamics of the teacher-student interaction is made explicit, and it clearly delineated

the limits placed on the teacher's ability to inuence the student. We showed that with

a detailed model of the student, optimal teaching policies can be theoretically generated

by viewing the teaching problem as a Markov decision process. The performance of the

optimal teaching policy serves as a bound on any agent's ability to inuence this student.

We examined our ability to teach two types of reinforcement learners. In particular, we

showed that when an optimal policy cannot be used, we can use TFT as a teaching method.

In the case of Q-learners this policy was very successful. Consequently, we proposed a model
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that explains this success. Finally, we showed that even in those games in which teaching

is not challenging, it is nevertheless quite useful. Moreover, when our objective is more

than simply teaching the student, even those simpler domains present some non-trivial

choices. In the future we hope to examine other learning architectures and see whether the

lessons learned in this domain can be generalized, and whether we can use these methods

to accelerate learning in other domains.

A number of authors have discussed reinforcement learning in multi-agent systems.

Yanco and Stein (1993) examine the evolution of communication among cooperative rein-

forcement learners. Sen et al. (1994) use Q-learning to induce cooperation between two

block pushing robots. Matraic (1995) and Parker (1993) consider the use of reinforcement

learning in physical robots. They consider features of real robots, which are not discussed

in this paper. Shoham and Tennenholtz (1992) examine the evolution of conventions in a

society of reinforcement learners. Kittock (1994) investigates the e�ects of societal struc-

ture on multi-agent learning. Littman (1994) develops reinforcement learning techniques for

agents whose goals are opposed, and Tan (1993) examines the bene�t of sharing information

among reinforcement learners. Finally, Whitehead (1991) has shown that n reinforcement

learners that can observe everything about each other can decrease learning time by a factor

of n. However, the above work is not concerned with teaching, or with the question of how

much inuence one agent can have over another. Lin (1992) is explicitly concerned with

teaching as a way of accelerating learning of enhanced Q-learners. He uses experience re-

play and supplies students with examples of how the task can be achieved. As we remarked

earlier, this teaching approach is di�erent from ours, since the teachers are not embedded

in the student's domain. Within game theory there is an extensive body of work that tries

to understand the evolution of cooperation in the iterated prisoner's dilemma and to �nd

good playing strategies for it (Eatwell et al., 1989). In that work both players have the

same knowledge, and teaching is not an issue.

Last but not least, our work has important links to work on conditioning and especially

operant conditioning in psychology (Mackintosh, 1983). In conditioning experiments an

experimenter tries to induce changes in its subjects by arranging that certain relationships

will hold in their environment, or by explicitly (in operant conditioning) reinforcing the

subjects' actions. In our framework the controlled agent plays a similar role to that of the

experimenter. Our work uses a control-theoretic approach to the related problem, while

applying it to two basic AI contexts.

The main drawback of our case studies is the simple domains in which they were con-

ducted. While this is typical of initial exploration of new problems, future work should try

to remove some of the limiting assumptions that our models incorporate. For example, in

the embedded teaching context, we assumed that there is no uncertainty about the out-

come of a joint action. Similarly, our model of multi-agent interaction in Section 3 is very

symmetric, assuming all agents can play all of the k roles in the game, that they are equally

likely to play each role, etc. Another assumption made was that malicious agents were

\loners" acting on their own, as opposed to a team of agents. Perhaps more importantly,

future work should identify additional domains that are naturally described in terms of

PCMAS and formalize a general methodology for solving PCMAS design problems.
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