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Abstract

This paper introduces a framework for Planning while Learning where an agent is given

a goal to achieve in an environment whose behavior is only partially known to the agent.

We discuss the tractability of various plan-design processes. We show that for a large

natural class of Planning while Learning systems, a plan can be presented and veri�ed in a

reasonable time. However, coming up algorithmically with a plan, even for simple classes

of systems is apparently intractable.

We emphasize the role of o�-line plan-design processes, and show that, in most natural

cases, the veri�cation (projection) part can be carried out in an e�cient algorithmicmanner.

1. Introduction

Suppose you �nd yourself in a complex labyrinth, with no recollection as to what brought

you there or how to get out. You do have some knowledge as to the possible outcomes

of your actions (e.g., gravitation works as usual). However, several basic characteristics of

your surrounding are unknown (e.g., the map of the labyrinth, or where you are in it). Your

goal is to plan your way out of there while learning enough facts about your surroundings

to enable that goal.

The above example is a special case of the following general setting: An agent P oper-

ating in an environment, is trying to achieve a given goal. At each point in time, the agent

is in a speci�c state. The agent can be fully described by a decision procedure, which deter-

mines the next action to be taken, as a function of its history of states. An environment is

taken to have some behavior, determining, for every state and action taken by the agent, the

next state that will be reached. P is given a set of possible behaviors of the environment,

only one of which is the actual behavior of the speci�c environment. We say that P has

partial information on the behavior of the environment. P 's goal is given as a subset of the

states. Reaching any of these states is considered a success.

P 's goal is, of course, not necessarily achievable; it may be the case that for one of

the possible behaviors of the environment, there does not exist a sequence of actions that

would lead P to a success. Moreover, even if for every possible speci�c behavior of the

environment there exists a sequence of actions that leads P to its goal, it may still be the

case that P cannot achieve its goal. For example, consider an environment with two possible

behaviors E

1

and E

2

. It may be the case that the only action a that leads P to its goal

c
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when the environment follows E

1

, leads to a state from which the goal is not achievable if

the environment behaves according to E

2

.

Nevertheless, even in the case in which P 's knowledge of the environment is not complete,

it may sometimes be possible for P to achieve its goal. Suppose that we change the above

example so that there exists an action c that, if taken by P , leads in the case that the

environment behaves according to E

1

, to a state which is observably di�erent from the

state that results from the same action (c) taken when the environment behaves according

to E

2

. In addition, suppose that there exists an action d that, in both cases, reverses c's

e�ects. In this case, P can always achieve its goal, by following the following plan: �rst take

c, and, according to the resulting state decide whether the environment behaves according

to E

1

or according to E

2

. Then, take action d to get back to the initial state. Finally, apply

the applicable sequence of actions for either the E

1

or the E

2

case.

In general, P may perform some actions that reduce the number of possible behaviors of

the environment (i.e., increase the knowledge that P has on the environment), while avoiding

actions that may lead to failure in any of the still possible behaviors of the environment,

according to P 's knowledge. P may eventually learn enough about the behavior of the

environment to choose the applicable action that leads to success. This process is referred

to as Planning while Learning.

This paper discusses the framework of Planning while Learning, while concentrating on

the tractability of �nding a satisfactory plan (i.e., a way to achieve the goal regardless of

which possible behavior of the environment is the actual one), or checking that a given plan

is satisfactory. The next section de�nes a basic framework where Planning while Learning

can be studied. In Section 3 we discuss the computational aspects we study in this paper.

In particular, we distinguish between three main types of representation, and between three

main computational categories. In Sections 4{5 we classify Planning while Learning based

on these computational categories and representation types. In Section 6 we discuss several

extensions to our basic framework. In Section 7 we put our framework and results in the

perspective of related work.

2. The Basic Framework

Consider the following examples which have motivated our study. The �rst example is

taken from a medical domain. Consider a trauma-care system, where there are many

1

observations that can be made on a patient's state. Actions taken by the doctor may

change these observations. For example, the doctor may be able to observe whether the

patient's blood pressure is high or low, and whether the patient has high or low temperature.

Based on the observations made, the doctor may need to take an action, which may in turn

lead to new observations. Based on these new observations, the doctor may need to choose

a subsequent action, and so on. There is a list of possible injuries that the patient might

su�er from, but the exact nature of the actual injury is not known apriori. Naturally, the

e�ects of the action taken by the doctor may depend on the actual injury of the patient.

The doctor needs to devise a plan that will take the patient from his initial observable state

to a goal state (i.e., a \physically stable state"). The doctor can observe the patient at each

1. The term \many" will become more concrete when we discuss representation types in the following

section, and will be identi�ed with exponential in the actual representation size.
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point in time, and learn facts about the actual injury (i.e., the actual environment behavior)

during the execution of the plan. Hence, we get a natural situation where Planning while

Learning is necessary.

Our second example is taken from a transportation domain. Let G = (V;E) be a

directed graph, where the vertices denote locations in a hostile environment. The edges

denote safe routes from one location to another, that are taken to be one-way (two-way

routes are described as a pair of one-way routes). One-way routes in this particular domain

occur as a result of the structure of the environment and of the vehicle used by the agent.

Uncertainty in this transportation domain arises from the fact that there is incomplete

information about the end-point of some routes originating from some particular locations

(i.e., the map is partially unknown). In some cases this incomplete information concerns

only a small number of locations and routes where the number of possible end-points of a

route is also small.

2

An agent moving along these routes knows the possible alternatives for

the structure of the environment and can identify the locations it arrives at. The objective

of the agent is to reach a given target location starting from a given initial location.

The above examples are taken from real-life situations. They are typical situations of

bounded uncertainty. Similar situations occur whenever we have to operate a machine that

works in one of several options. In many of those cases, the possible observations can be

stated, and the set of possible environment behaviors can be listed; the actual behavior,

however, may be unknown apriori. Illuminating results regarding these examples are implied

by our study. Nevertheless, we �rst have to de�ne our basic framework.

De�nition 2.1: An agent-environment system M = (Q;A; q

0

;�

M

) consists of a set of

observable states Q, a set of possible actions A, an initial state q

0

2 Q and an actual

transition function �

M

:Q�A ! Q that determines for each state q 2 Q and action a 2 A

the next state q

0

= �

M

(q; a).

Based on the above de�nition we can de�ne what a Planning while Learning system is.

Notice that we associate the informal term \behavior" with the term \transition function",

where the actual behavior is the actual transition function.

De�nition 2.2: A Planning while Learning system S = (M; 
) consists of an agent-

environment system M = (Q;A; q

0

;�

M

), and a set of possible transition functions 
 =

fE

1

; :::; E

n

g, all sharing the same set of observable states Q, where the actual transition

function is one of these possible transition functions.

Notice that we used the term observable states rather than just states. An observable

state of an agent is what the agent perceives at a given point (e.g., its physical location)

rather than its complete state of knowledge. We assume that an agent can always distinguish

between di�erent observable states. The complete state of knowledge can be de�ned based

on the history of actions and observable states of the agent. This history is an ordered

sequence of observable states the agent visited and actions it performed. For example, if

an agent performed an action a that led from an observable state s

1

to an observable state

2. In the sequel, small will be identi�ed with polynomial in the actual representation size. In the partic-

ular application we speak about, the number of uncertain routes is logarithmic, while the number of

possibilities for each such route is bounded by a small constant.
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s

2

, and a leads to s

2

if and only if the environment behavior is not b, then we can say that

the agent learned that the environment behavior is not b. The agent will know that the

environment does not behave according to b in the state it reaches following this action,

but this knowledge is not implied by the observable state s

2

! This enables us to obtain

a succinct and natural representation of agents. This type of representation has already

been used in Rosenschein's situated automata (Rosenschein, 1985) and in work on reasoning

about knowledge (Halpern & Moses, 1984).

The observable states in the transportation domain example are the locations, and

the actual transition function corresponds to the actual routes in the environment. In the

trauma care domain, the observable states are the possible observations of the doctor, while

the actual transition function corresponds to the e�ects of the doctor's actions given the

actual injury of the patient. In both examples the agent may reach a state where it knows

complex facts about the environment, based on the facts it learned by acting and observ-

ing. However, these complex states need not be represented explicitly. Further discussion

of this topic can be found in the situated automata (Rosenschein, 1985; Rosenschein &

Kaelbling, 1986) and knowledge in distributed systems (Halpern & Moses, 1984; Halpern,

1988) literature.

The reader should not confuse our use of automata-like structures with other common

uses of it. We don't assume that an agent acts as if it is a �nite-state machine, but only

that the number of possible observations and possible environment behaviors it considers is

�nite. The agent's decisions will be based on its history of observations and actions which

determine its local state (Rosenschein, 1985; Halpern & Moses, 1984) and is much more

complex than its observable state. The agent's local state is not necessarily represented

explicitly. This gives succinct and useful representations, as the ones discussed in Discrete

Event Systems (DES) (Ramadge & Wonham, 1989) and in work in AI that incorporates

uncertainty to control-theoretic models (Moses & Tennenholtz, 1991).

The above model is fundamental and some extensions of it will be discussed in Section 6.

Given this model, we are now able to de�ne the basic problem in Planning while Learning.

The problem is to �nd a satisfactory plan that achieves a goal given any possible behavior of

the environment. This problem is further discussed in the following section and investigated

in subsequent sections. Similar de�nitions hold, and similar results can be obtained, if we

require the agent to achieve its goal only in a fraction (e.g., 90%) of the possible behaviors.

De�nition 2.3 : Let S = (M; 
) be a Planning while Learning system, where M =

(Q;A; q

0

;�

M

), and 
 = fE

1

; :::; E

n

g. A goal g for the agent P , is a subset of the states Q.

A plan for an agent is a function from its history of states (in Q) and actions (in A) to an

action (in A). Given a goal g, a satisfactory plan is a plan that guarantees that the agent

will reach a state in g starting from q

0

, under any possible transition function in 
. A plan

is called e�cient if the number of actions that are executed in a course of it is polynomially

bounded (in the representation of the Planning while Learning system).

A satisfactory plan is therefore a plan in which the agent learns enough about the

environment behavior, in order to guarantee the achievement of the agent's goal. Notice

that, in general, a plan might be very complex. An agent might arrive, in the course of

its learning process, to situations where its goal is no longer achievable. Hence, the agent

has to �nd a proper combination of learning and acting phases. A satisfactory plan can be
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viewed as a decision tree where each edge is associated with a pair of an observable state

and an action to be performed in that state. This is a general representation of conditional

plans. An e�cient plan will therefore correspond to a decision tree of polynomial depth.

Notice, however, that the size of an e�cient plan may still be exponential.

3. A Computational Study

In the previous section we de�ned a basic framework of Planning while Learning, and what a

satisfactory plan for an agent P is. In this section and in the following ones we would like to

consider the complexity of �nding such a plan or checking that a given plan is satisfactory.

In order to discuss the issue of complexity we need to discuss our measures of complexity,

and the type of representations of Planning while Learning systems we would like to look

at.

3.1 Basic Representations

We will distinguish between three basic Planning while Learning system representations:

1. General Representations: Both the number of agent's observable states (i.e., jQj)

and the number of possible transition functions may be exponential

3

in the size of the

actual representation.

2. Quasi-Moderate Representations: The number of agent's observable states might

be exponential in the size of the system representation, but the number of possible

transition functions is at most polynomial in that size. This is a most appealing type

of representation for systems with bounded uncertainty (Halpern & Vardi, 1991).

The trauma-care system mentioned in Section 2 is an example of a system with a

quasi-moderate representation. In such a system we usually have a set of atomic

observations (e.g., whether the blood pressure is high or low). The number of atomic

observations is linear in the problem's input, but the number of possible observations

(i.e., observable states which are tuples of atomic observations) is exponential. The list

of possible injuries that the patient might have is usually polynomial in the problem's

input. Hence, we get a quasi-moderate representation of a Planning while Learning

system.

3. Moderate Representations: Both the number of agent's observable states and the

number of possible transition functions is polynomial in the representation size. This

type of representation is less general than a quasi-moderate representation, but it is

still expressive and completely non-trivial as we will later discuss. The transportation

domain example of the previous section is moderately represented by a graph-like

structure, in cases where there are at most polynomially many alternatives for the

actual structure of that graph (e.g., in a particular application, there are a constant

number of possibilities to a logarithmic number of routes).

3. We will use the term exponential and polynomial with their standard means (i.e., polynomial and

exponential in the actual representation size.)
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In the remainder of this paper we use the term moderate system (resp. quasi-moderate

system) to refer to a moderate representation (resp. quasi-moderate representation) of a

Planning while Learning system.

3.2 Basic Computational Categories

Given a Planning while Learning system, there are three main computational categories

that we consider.

1. Intractable: Checking whether a plan for the agent is satisfactory is computationally

hard, and may take exponential time.

In Planning while Learning systems that fall into this category, even the problem of

representing the plan and verifying that this supplied plan is satisfactory is computa-

tionally intractable (i.e., either the space needed for representation is exponential or

the veri�cation process takes exponential time).

2. O�-Line Tractable: A satisfactory plan for the agent P has a short representation

(i.e., polynomial in the representation of the problem), and checking whether a plan

is satisfactory can be carried out e�ciently in polynomial time.

Systems that fall into this category may succumb to a trial and error process, in which

an intelligent designer (i.e., a human) suggests some plan for solving a problem. The

suggested plan is represented and veri�ed. If it fails the veri�cation process, then

the exact failure is reported, and the designer may try to generate a new plan. This

trial and error process is a typical solution for design problems. A designer is given a

speci�c problem, and may use her experience in suggesting a plan. The plan should

be represented and veri�ed e�ciently. If the plan is not satisfactory, the e�cient

veri�cation process locates the failures and informs the designer, who may choose to

generate a new plan, etc. This approach was at �rst made explicit in the AI literature,

by the seminal paper of McCarthy and Hayes (McCarthy & Hayes, 1969) where it is

referred to as the Missouri program. This approach is indeed the one used in many

practical situations, such as the ones mentioned in the previous section. A more

detailed demonstration of that idea and further discussion can be found in (Moses &

Tennenholtz, 1993; Shoham & Tennenholtz, 1994).

Hence, in systems that fall into this category, various plans can be tried in an o�-line

design process, supported by a computerized e�cient veri�cation procedure, which

hopefully results in a satisfactory plan.

3. On-Line Tractable: A satisfactory plan for the agent P has a polynomial represen-

tation, that is not only e�ciently veri�able, but can be actually computed (algorith-

mically) in polynomial time.

3.3 Basic Results

We would like to classify Planning while Learning systems based on the above categories.

The following results are simple corollaries of results proved by Moses and Tennenholtz in

another context (Tennenholtz & Moses, 1989; Moses & Tennenholtz, 1991; Tennenholtz,

1991) and their proof is omitted from the body of this paper.
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1. Given a general representation of a Planning while Learning system, �nding a satisfac-

tory plan is PSPACE-hard. The problem remains PSPACE-hard even if we consider

only e�cient plans. The size of the related plan may be exponential.

2. If we do not restrict ourselves to e�cient plans, then �nding a satisfactory plan in

quasi-moderate systems is PSPACE-hard. The size of the related plan may be expo-

nential.

3. Finding an e�cient satisfactory plan in quasi-moderate Planning while Learning sys-

tems with only one possible transition function (i.e., planning with complete informa-

tion) is NP-hard. In this case, it is enough to consider plans of polynomial size.

The above results give several restrictions as to what we will be able to obtain in

our study: we can not hope that �nding a satisfactory plan, either e�cient or ine�cient,

will be (even o�-line) tractable given arbitrary representations of Planning while Learning

systems. In addition, we can not hope that Planning while Learning in quasi-moderate

representations will be on-line tractable. We remain however with several basic questions:

1. Given a quasi-moderate representation of a Planning while Learning system, is the

problem of �nding an e�cient satisfactory plan o�-line tractable?

2. Given a moderate representation of a Planning while Learning system, is the problem

of �nding an either e�cient or arbitrary satisfactory plan tractable (either o�-line or

on-line)?

We will treat moderate representations �rst. Our results regarding quasi-moderate

representations will be a simple modi�cation of a result regarding moderate representations.

We would like now to show why the problem of Planning while Learning, even in moderate

representations, is non-trivial.

Consider an agent P who does not have complete information on the environment be-

havior, i.e., there may be more than one possible behavior of the environment. P 's plan,

instead of being a sequence of actions, becomes a decision tree. P 's action, in this case, is a

function, not only of the observable state, but also of the past history of P . In the example

mentioned in the introduction, where P has to �rst take the action c to distinguish behavior

E

1

from behavior E

2

, P 's plan has a di�erent branch for the case the environment behaves

according to E

1

and for the case it behaves according to E

2

.

Note that, introducing P 's memory as a parameter in its plan | this is essentially the

di�erence between a sequence and a decision tree as P 's plan | may cause an exponential

blow-up in the size of that plan, and may make intractable the task of devising or verifying

a plan, even in moderate representations. This holds even when we consider e�cient plans!

Hence, Planning while Learning even in moderate systems is completely non-trivial.

4. O�-Line Tractability

In this section we show that given a moderate (resp. quasi-moderate) representation of a

Planning while Learning system, whenever there is a satisfactory plan (resp. an e�cient

satisfactory plan) for an agent, there is a satisfactory plan (resp. an e�cient satisfactory
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plan) that can be represented in polynomial space, and can be checked in polynomial time.

As we mentioned, this is a non-trivial fact even for moderate systems. We prove the result

for moderate systems, and then show why it is applicable for the richer context of quasi-

moderate systems.

The proof of our o�-line tractability result will follow from the following lemmas.

Lemma 4.1: Let P be a satisfactory plan for achieving a goal g, in a moderate Planning

while Learning system S with s possible behaviors (i.e., transition functions), and t observ-

able states. Then, there exists a satisfactory plan P

0

for achieving g in that system, where

the longest path of P

0

is bounded by s � t.

Proof: If the agent P performs along any path of P more than t actions without learning

anything (i.e., along t actions the agent does not get any new information about the actual

behavior), then it must visit a particular observable state twice, without getting any new

information about the actual behavior, and therefore we can shrink P by dropping actions

which took place between these visits. We can perform this process until there will be no

sequence of t actions in which no learning occurs.

The learning of the agent is monotonic: whenever it learned something about the envi-

ronment behavior, future information can just make this knowledge more concrete. Since

the number of possible behaviors is s, we get that a knowledge increase can occur at most

s times.

Combining the above observations leads to the desired result.

Lemma 4.2 : Let P be a satisfactory plan, for a moderate Planning while Learning

system S with s possible behaviors, and where the longest path in P is of length t. Then,

there exists a representation of P (in size polynomial in s and t) such that verifying that P

is satisfactory can be carried out in time polynomial in s and t.

Proof: The concise representation P

0

of P consists of a table, where each entry of the

table corresponds to a distinct observable history of an interaction of the agent P with the

environment, and contains an action to be taken by P for that speci�c (partial) scenario.

The number of distinct entries in the table (P

0

) can be limited to include only the

plausible distinct histories (i.e., the histories which can be generated) for the system S and

the plan P . The number of such distinct histories is bounded by s (the number of possible

behaviors of the environment) times t (the di�erent stages in a speci�c interaction).

In order to verify that a plan P

0

which is represented in that manner is satisfactory, one

needs to go over all possible behaviors and for each one of them check that P

0

leads to P 's

goal.

As an immediate corollary we obtain the following:

Theorem 4.3: Finding a satisfactory plan for any moderate Planning while Learning

system is o�-line tractable.

Consider an agent who wishes to reach his destination in the hostile environment of

Section 2. In principle, there might be exponentially-many histories of observations the
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agent may encounter. Nevertheless, our result says that it is enough to consider only

polynomially-many of them in order to specify the appropriate plan. This is most helpful

for the designer; she will be able to represent her suggested solution in a relatively concise

way. If the suggested solution is not satisfactory, this fact will be e�ciently detected, and

perhaps can be repaired. The problem of navigation in a hostile environment we mentioned

above is actually solved this way.

Notice that Lemma 4.1 is quite satisfactory for moderate systems. However, in quasi-

moderate systems this Lemma is not useful, since in that case t might be exponential

in the actual representation size. However, the properties obtained by Lemma 4.1 can

be regained by considering e�cient plans. For most practical purposes, we do not lose

generality by restricting our attention to e�cient plans, since a planner will not be able to

execute exponentially many actions in the course of a plan. Given that Lemma 4.2 does

hold for quasi-moderate representations, we get:

Theorem 4.4: Given a quasi-moderate Planning while Learning system, �nding an e�-

cient satisfactory plan is o�-line tractable.

This result is quite satisfactory, since quasi-moderate systems are a rich context. For ex-

ample, some architectures such as the ones discussed by Brooks and his colleagues (Brooks,

1986) can be treated as quasi-moderate systems. They include a polynomial number of sen-

sors, which correspond to an exponential number of possible observations, and are tested

against a list of possible environment behaviors (i.e., the appropriate sensor-e�ector mech-

anism is checked for a list of environment behaviors). As we mentioned before, quasi-

moderate systems correspond to complex systems where the number of possible worlds

describing the environment is e�ciently enumerable. These constitute a rich and appeal-

ing family of systems (Halpern & Vardi, 1991). Our results show, for example, that the

trauma-care system discussed in the previous section can be built as an expert system that

devises the next action to be performed based on the history of observations by the doctor.

The problem of coming up with the plan may not be trivial, but our results show that a

concise representation of a plan which is e�ciently veri�able does exist whenever an e�cient

satisfactory plan exists. Therefore, the e�ort of generating the appropriate plan o�-line is

worthwhile.

5. On-Line Intractability

In this section we show that it is not likely that there is a general algorithm to come up with

a satisfactory plan for any moderate Planning while Learning system, since just deciding

whether such a plan exists is NP-hard. We prove the result for the basic framework of

Section 2. A similar result holds regarding e�cient satisfactory plans. This will imply

similar results for the case of e�cient satisfactory plans in quasi-moderate Planning while

Learning systems, and for the extended frameworks discussed in the following section.

This result together with the results obtained in the previous section complete the

classi�cation of Planning while Learning discussed in Section 3.

Theorem 5.1: Given a moderate Planning while Learning system, deciding whether there

exists an (arbitrary or e�cient) satisfactory plan for the agent P is an NP-hard problem.

119



Safra and Tennenholtz

Proof: Given any 3-SAT formula ', over variables v

1

; :::; v

n

and consisting of clauses

c

1

; :::; c

t

, we construct, in polynomial time, a moderate Planning while Learning system

S

'

, such that there exists a satisfactory plan for P in S

'

if and only if there exists an

assignment to v

1

; :::; v

n

that satis�es '. Since satis�ability of a 3-SAT formula is NP-hard,

this implies that deciding whether there exists a satisfactory plan, even for moderate sys-

tems, is an NP-hard problem. Our reduction will hold for the case of e�cient satisfactory

plans as well.

The set of observable states Q, in the system S

'

, is fb; q

1

; :::; q

n+t+1

g. The possible

behaviors of the environment are

n

E

1;

�

0

; :::; E

n;

�

0

; E

1;

�

1

; :::; E

n;

�

1

o

(there are 2n possible be-

haviors). The initial state is q

1

. The set of possible actions for P is f

�

0;

�

1; a

1

; :::; a

7

g. P 's

goal is to reach the state q

n+t+1

.

The state b is a black-whole, where any action that P takes from b results back at b

(which is an unsuccessful state).

From any state q

i

, i 2 f1; :::; ng, in both the cases, where P takes the action

�

1 and the

environment behaves according to E

i;

�

0

, and where P takes the action

�

0 and the environment

follows the behavior E

i;

�

1

, the resulting state is q

n+t+1

(P 's goal). For all other behaviors,

if P takes the actions

�

0 or

�

1 from state q

i

, the resulting state is q

i+1

. (Taking the actions

a

1

; :::; a

7

leads to the state b).

For any clause c

j

, with each assignment (to the variables mentioned in c

j

) that satis�es

c

j

, we associate one of the actions a

1

; :::; a

7

(a clause with 3 variables has 7 satisfying

assignments to its variables). If the observable state is q

n+j

, and P takes the action a

k

,

which is associated with an assignment that assigns 0 (1) to variable v

l

, and the environment

behaves according to E

l;

�

1

(E

l;

�

0

), the resulting state is b (hence P 's goal is not achievable

anymore); taking the action a

k

from the state q

n+j

, under other possible behaviors, leads

to state q

n+j+1

.

We show now that if ' is satis�able then there exists a satisfactory plan for P in S

'

. Let

S: f1; :::; ng! f0; 1g be an assignment to variables v

1

; :::; v

n

, that satis�es '. We construct

a plan P

S

for P as follows: in the i

th

step, the agent takes the action

�

0 or

�

1 depending on

the value of S(i). Then, in step n + j, the agent takes action a

k

, that corresponds to the

restriction of S to the variables that appear in c

j

. It is easy to see that P

S

leads to success

regardless of the actual environment behavior.

On the other hand, given a satisfactory plan P for P , we show there exists an assignment

S

P

that satis�es '. S

P

is constructed according to the �rst n steps of P (for the behaviors

that did not reach success yet) | which must be either

�

0 or

�

1. S

P

satis�es ', otherwise there

would be a clause c

j

, such that any assignment that satis�es c

j

, contradicts the assignment

of S

P

's value to one of the variables v

l

, which would cause failure, on the (n+ j)

th

step, for

either behavior E

l;

�

0

or E

l;

�

1

.

6. Extending the Framework

The previous sections introduced and investigated a general framework of Planning while

Learning. A major feature of the model discussed in the previous sections is that the agent

does not a�ect the environment behavior. This is quite natural in many applications. In

many cases we may wish to consider a particular set of possible worlds (i.e., behaviors,
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transition functions), and there is no reason to assume they may change, given that a

possible world speci�es a full transition function. An interesting extension results from

relaxing this feature. For example, in the transportation domain described in Section 2,

one may wish to consider a case where moving along a particular route prevents future

movements along other routes. This is due to the fact that movements along some routes

may reveal the agent's existence to an enemy and will prevent the agent's movement along

some routes that are under the enemy's control. Another interesting extension we would

like to consider is the case of a multi-agent system instead of a single-agent one.

Both of the above extensions are strict generalizations of our basic framework. There-

fore, our on-line intractability results hold in the extended frameworks as well. However,

questions regarding o�-line tractability should be carefully considered. We will de�ne these

extended frameworks and investigate the o�-line tractability of the related problems.

6.1 Dynamic Behaviors

De�nition 6.1: An extended Planning while Learning system S

e

= (Q;A; q

0

; B; b

0

;�

e

)

consists of a set of observable states Q, a set of possible actions A, an initial agent's state

q

0

2 Q, a set of environment behaviors B, an initial environment behavior b

0

2 B, and a

global transition function �

e

:Q� B � A ! Q � B, that determines for each state q 2 Q,

behavior b 2 B, and action a 2 A, the next state and behavior (q

0

; b

0

) = �

e

(q; b; a).

Notice that in extended Planning while Learning systems, the global transition function

may change the behavior (i.e., the actual transition function) of the environment.

The de�nition of a goal and of a satisfactory plan will remain as in the basic framework.

More speci�cally, we assume that the agent does not initially know the identity of b

0

,

but wishes to devise a plan that will succeed regardless of the identity of b

0

. The agent

however knows �

e

. These assumptions will capture Planning while Learning in the extended

framework. A moderate (resp. quasi-moderate) extended Planning while Learning system

is a Planning while Learning system in which the number of elements in B is polynomial,

and the number of elements in Q is polynomial (resp. exponential) in the size of the actual

representation. The meaning of these de�nitions is as in the basic Planning while Learning

framework.

Unfortunately, Lemma 4.1 does not hold even for moderate extended Planning while

Learning systems. However, as we mentioned in Section 4, the properties obtained by

Lemma 4.1 can be regained by considering e�cient plans. For most practical purposes, we

do not lose generality by restricting our attention to e�cient plans, since a planner will not

be able to execute exponentially many actions in the course of a plan. As we mentioned

before, blow-up in the size of satisfactory plans may still be possible, even if we restrict

ourselves to e�cient plans only. We make no assumptions about the size of the related

decision tree.

Fortunately, Lemma 4.2 does hold for extended Planning while Learning systems. The

proof of this lemma for the extended framework is similar to its proof in the basic framework.

Combining the above we get:

Theorem 6.1: Given a quasi-moderate extended Planning while Learning system, �nding

an e�cient satisfactory plan is o�-line tractable.
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6.2 Multi-Agent Systems

Another interesting extension is concerned with the case where there is more than one agent

in the system. For ease of exposition, we will assume that there are two agents that generate

actions.

4

An interesting feature of the multi-agent case is that an agent might not be familiar

with the goal and the initial state of the other agent. Hence, Planning while Learning refers

now to the case in which an agent tries to achieve its goal while learning about the behavior

of the environment, and about the goals and initial states of other agents.

De�nition 6.2: A multi-agent Planning while Learning system is a tuple

S

m

= (Q

1

; Q

2

;A; q

1

0

; q

2

0

; B; b

0

;�

m

) where Q

i

is a set of observable states for agent i, A is a set

of possible actions, q

i

0

2 Q

i

is the initial state of agent i, B is a set of environment behaviors,

b

0

2 B is an initial environment behavior, and �

m

:Q

1

�Q

2

� B �A

2

! Q

1

� Q

2

�B is a

global transition function that determines for each pair of states q

1

2 Q

1

,q

2

2 Q

2

, behavior

b 2 B, and a joint action of the agents (a

1

; a

2

) 2 A

2

, the next observable states of the

agents and the next environment behavior: (q

1

0

; q

2

0

; b

0

) = �

m

(q

1

; q

2

; b; a

1

; a

2

).

Each agent has its own goal, and its plan is a decision tree that refers only to that

agent's observable states. The de�nitions of moderate and quasi-moderate representations

are straightforward generalizations of their de�nitions for extended Planning while Learning

systems. In addition, we assume that each agent can start in one of polynomially many

initial observable states, and may have one of polynomially many goals it might be required

to achieve. Nevertheless, each agent may not know what the exact initial state of the other

agent is, and what the exact goal of the other agent is. We are interested in satisfactory

multi-agent plans. Formally, we have:

De�nition 6.3: Given a multi-agent Planning while Learning system, a multi-agent plan

is a pair of sets of plans, one set for each agent. Let Goal

i

denote the set of plans for agent

i. A multi-agent plan is satisfactory if for each agent i and for each possible goal g of agent

i, there is a plan in Goal

i

, that achieves g starting from any possible initial state, regardless

of the plan (in the corresponding Goal

j

) and initial state of the other agent, and regardless

of the initial behavior of the environment. An e�cient satisfactory multi-agent plan is a

satisfactory multi-agent plan that consists of plans which are decision trees of polynomial

depth.

The above de�nition captures intuitive situations of Planning while Learning in multi-

agent domains. Assume for example that there are two forces that have to move in the

hostile environment of Section 2. They start moving on 5AM, and need to reach their

destinations by 9PM. Nevertheless, they can not be sure about the exact initial location

of each other and about each other's destination. What the commander attempts to do in

that case, is to devise a master-plan that should be good for all goals, initial locations, and

environment behaviors. This master-plan is the satisfactory multi-agent plan we look for.

Notice that movements of one agent may a�ect the behavior of the system and the results

4. Our discussion and results hold for any constant number of agents.
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of other agents' movements. It is easy to see that similar scenarios occur in the trauma-care

example and in many other natural systems.

We now show that our o�-line tractability result can be extended to the multi-agent

case as well. We will use the following two lemmas.

Lemma 6.2: Given a quasi-moderate multi-agent Planning while Learning system, where

each agent has only one goal, if an e�cient satisfactory multi-agent plan for achieving

these goals exists, then there exists such an e�cient satisfactory multi-agent plan that can

be encoded in polynomial space, and be veri�ed in polynomial time.

Proof: In this case each agent knows the goal of the other agent, and hence it is clear that

it might learn only facts about the possible initial states and behaviors.

Given that there is only a polynomial number of possible initial states and environ-

ment behaviors, and given the polynomial bound on the depth of the plans, there are only

polynomially many sequences of observations (each of which of polynomial length) of each

agent that are of interest (as in Lemma 4.2). Hence, we can encode, in polynomial space,

a decision table for each agent mentioning only these sequences, and check, in polynomial

time, whether it determines a satisfactory multi-agent plan.

Lemma 6.3: Given a quasi-moderate multi-agent Planning while Learning system S, where

each agent has n possible goals (where n is polynomially bounded in the actual representation

size), there exists a quasi-moderate multi-agent Planning while Learning system S

0

(where

quasi-moderate refers to the actual representation size of the original system S), with a

unique goal for each agent, such that there exists an (e�cient) satisfactory multi-agent plan

in S

0

if and only if there exists an (e�cient) satisfactory multi-agent plan in S.

Proof: S

0

will be built as follows. The observable states of agent i in S

0

will be the cartesian

product of the observable states of agent i in S with the set of states:

fstart

i

; observe

i

1

; : : : ; observe

i

n

; goal

i

g. The initial state of agent i in S

0

will be taken to

be the pair consisting of its initial state in S and start

i

, and its goal is taken to be the

set of states in which goal

i

is a component. The environment in S

0

will be a cartesian

product of the behaviors in B with two sets G

1

and G

2

, where G

i

has n distinct elements:

fg

0

i

1

; : : : ; g

0

i

n

g.

Agent i will have a distinguished action, called observe� goal

i

, which he must execute

in its initial state. The state transition function will be as in S, but when i performs

observe� goal

i

its \new component" in the cartesian product (and only it) will change;

the change will be to observe

i

j

if and only if the projection of the initial behavior on G

i

is

g

0

i

j

. In addition, assume that fg

i

1

; : : : ; g

i

n

g are the possible goals for agent i in S, then the

transition function in S

0

will change the new component of the observable state to goal

i

if

and only if the new component of the environment is in state g

0

i

j

, and a state satisfying g

i

j

has been reached.

The above transformation from S to S

0

makes the identity of an agent's goal a component

of the initially unknown behavior. However, agent i and no other agent will observe its goal

after its �rst action. It is easy to see that the above transformation keeps the system quasi-

moderate, and that there exists a satisfactory multi-agent plan in S if and only if there

exists such a plan in S

0

, where in S

0

each agent has only one possible goal.
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Combining the above lemmas we get:

Theorem 6.4: Given a quasi-moderate multi-agent Planning while Learning system, �nd-

ing an e�cient multi-agent satisfactory plan is o�-line tractable.

The above proof shows that Planning while Learning is o�-line tractable in multi-agent

cases such as the ones described above. Given the structure of the above lemmas, it is easy

to prove similar results for other contexts where there is a polynomially bounded uncertainty

about a multi-agent system. For example, if we would like to �nd a multi-agent plan where

crash failures of agents might occur (in that case the faulty agent might not achieve its goal,

but we require that the other agent will still be able to achieve its goal), then we can show

that this problem is o�-line tractable, using the above techniques.

7. Related Work

Early work in the area of planning was devoted to various cases of planning with complete

information (see (Allen, Hendler, & Tate, 1990) for many papers on that topic). As research

in this area progressed in various directions, several independent works observed that the

assumption that a planner has complete information is unrealistic for many situations; the

sub-area that treats that aspect of planning is usually referred to as planning in uncertain

territories.

Examples of research in this sub-area include work concerning knowledge and action

(Moore, 1980; Halpern, 1988), work on conditional and reactive plans (Dean & Wellman,

1991) and work on interleaving planning and execution (Ambros-Ingerson & Steel, 1988).

The reactive approach is proposed as a tool in the control of robots operating in uncertain

environments, and in the design of real-life control architectures that would be able to

react in a satisfactory manner, given unpredicted events (Brooks, 1986). The interleaving

of planning and execution may sometimes be a useful alternative to conditional planning.

However, in many realistic domains there is a need to consider a whole or large portion of

a plan before deciding on an action. This is the case in the transportation domain and the

trauma-care domain we discussed. Nevertheless, we see the interleaving of execution with

Planning while Learning a promising direction for future research.

Research in the direction of conditional plans deals with plans in which the outcome

of the agent's action may a�ect the next action taken by the agent. Theoretical work on

this issue is mainly devoted to aspects of reasoning about knowledge and action (Moore,

1980; Halpern, 1988; Morgenstern, 1987), and to the logical formulation of conditional

plans (Rosenschein, 1981). Speci�c mechanisms to construct conditional plans in which

observable events and tests are explicitly declared are discussed as well (Wellman, 1990).

These as well as the more classical work on conditional plans (Warren, 1976), and work that

followed and extended it in various directions (Peot & Smith, 1992; Etzioni, Hanks, Weld,

Draper, Lesh, & Williamson, 1992) have not concentrated on general computational aspects

of Planning while Learning. Our work does not concentrate on speci�c mechanisms for the

construction of conditional plans; Rather, it concentrates on general computational aspects

of conditional planning. Some recent work has also been concerned with computational

aspects of conditional plans, but concentrated on several natural pruning rules that can be

used in the construction of conditional plans (Genesereth & Nourbakhsh, 1993).
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Our approach crystallizes the notion of an agent interacting with an environment, and

having to come up with a conditional plan, which would lead to the agent's goal in every

possible behavior of the environment (possible world). We are mainly concerned with

general computational aspects of Planning while Learning, and classify Planning while

Learning based on several computational categories and representation types.

Another suggested approach for planning in uncertain environments, whose applicability

aroused quite a heated discussion recently, is referred to as universal plans (Schoppers, 1987).

A universal plan is one in which the reaction of the agent to every possible event of the

environment is speci�ed explicitly. Our results isolate general classes of systems in which

the agent's actions can be speci�ed explicitly in an e�cient manner, in order to enable

automatic veri�cation. Furthermore, systems that do not fall into the above classes may be

intractable even if the agent has complete information on the environment behavior.

Other somewhat related work is concerned with planning routes where the geography

is unknown (Papadimitriou & Yannakakis, 1989; Mcdermott & Davis, 1984). For example,

one may be interested in �nding a route leading from one city to another without access to

an appropriate map. This work may be viewed as a special case of the general framework of

Planning while Learning. Work on the design of physical part orienters (belts, panhandlers)

that accept an object in one of several possible orientations and output it in a predetermined

orientation (Natarajan, 1986) may also be viewed as a special case of our framework.

Our work is concerned with the o�-line and on-line tractability of Planning while Learn-

ing. This relates it to work concerned with the tractability of di�erent types of plan-

ning (Erol, Nau, & Subrahmanian, 1992; Bylander, 1992). This work mainly concentrated

on on-line tractability of a single-agent planning with complete information. Our work

concentrates on general computational aspects of planning with incomplete information,

considers also multi-agent situations, and discusses both on-line and o�-line tractability.

Recall that o�-line design and tractability, although considered an attractive option (Mc-

Carthy & Hayes, 1969), has been almost neglected in the recent years (but see (Moses &

Tennenholtz, 1993; Shoham & Tennenholtz, 1994)).

Research on inference of �nite-automata (Rivest & Schapire, 1987, 1989) assumes an

agent that tries to infer the structure of an automaton. The agent is given a limited access

to the automaton, and is expected to gain enough information to deduce the complete

structure of the automaton. By contrast, in the framework discussed in this paper, the

agent needs only gain information that would help in reaching the given goal. Therefore,

in what is probably a most natural case, the automaton is fairly complicated, thus learning

its complete structure is computationally infeasible. However, being only interested in a

speci�c goal, one may be able to obtain the necessary information, and succeed in that

goal. In addition, work on computational learning assumes that the given automaton is

fully connected, to enable reaching any state of the automaton and eliminating the need

of avoiding states from which other states are not reachable. This assumption | that the

automaton is fully connected | may very well be false in many real-life applications.

The part of our work which discusses multi-agent plans is related to issues in distributed

AI (Bond & Gasser, 1988) and to the complexity of multi-agent planning (Tennenholtz &

Moses, 1989); we investigate the computational di�culty that arises due to uncertainty

concerning the activities of an additional agent(s).
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As far as related representations are concerned, the model we present is di�erent from

classical representations in the spirit of STRIPS. It is a classical Discrete Event Systems

model (Ramadge & Wonham, 1989). The general connection between planning and con-

trol theory has been discussed in previous work (Dean & Wellman, 1991). In addition,

Tennenholtz and Moses show a reduction from control-theoretic models as the ones we

discuss to the more classical STRIPS-like representations (Tennenholtz & Moses, 1989).

They show how a typical STRIPS-like representation can be reduced to a quasi-moderate

representation. However, the control-theoretic representations we considered are concep-

tually di�erent from classical planning models, due to the fact that they model explicitly

the possible observations of agents and the e�ects of actions given di�erent environment

behaviors, rather than represent general facts about an environment. The local (or mental)

state of an agent, which is the general agent's state discussed in the AI literature (Shoham,

1990), will not be represented explicitly in our representation and will be built implicitly

based on the agent's actions and observations. Hence, the most appropriate similar model of

knowledge representation in AI is the situated automata (Rosenschein, 1985). Notice that,

in general, the number of local states an agent might reach is exponential in the number of

its observable states.

8. Conclusions

A useful planning system needs to have three essential properties. First, it should supply

a mechanism for the generation of plans. Second, it should supply a concise way for repre-

senting plans. Third, it should supply an e�cient mechanism for the veri�cation of plans

or for testing candidate plans.

In this paper we concentrate on planning in uncertain territory, where the agent has

only partial information on the environment behavior. We show that it is intractable to

build a useful planning system even for moderate representations (i.e., representations in

which the number of observable states and possible behaviors is polynomial in the actual

representation size). However, our positive results show that it is possible, in moderate and

quasi-moderate representations (where the number of observable states might be exponen-

tial), to satisfy the 2nd and 3rd properties mentioned above. Hence, o�-line design becomes

tractable, as discussed and demonstrated in the paper.

Notice that if we consider quasi-moderate systems and e�cient plans, which is a most

natural situation, our results imply that Planning while Learning is as e�cient as planning

with complete information. Both are o�-line tractable and on-line intractable. However, in

moderate systems, planning with complete information is quite trivial (this is the case of

graph search (Aho, Hopcroft, & Ullman, 1974)), while in that case we show that Planning

while Learning is NP-hard. More generally, we obtain a complete classi�cation of Planning

while Learning systems based on several representation types and computational categories.

In addition, we discuss extensions of Planning while Learning, such as Planning while

Learning in multi-agent domains.

The framework of Planning while Learning is a general framework where planning in

uncertain territory can be studied. The introduction of this framework, and the related

(positive and negative) results, facilitate that study.
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