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Abstract 

This paper introduces and investigates the notion of qualitative equilibria, or stable social laws, in 
tbe context of qualitative decision making. Previous work in qualitative decision theory has used the 
maximin decision criterion for modelling qualitative decision making. When several decision-makers 
share a common environment, a corresponding notion of equilibrium can be defined. This notion can 
be associated with the concept of a stable social law. This paper initiates a basic study of stable social 
laws; in particular, it discusses the stability benefits one obtains from using social laws rather than 
simple conventions, the existence of stable social laws under various assumptions, the computation 
of stable social laws, and the representation of stable social laws in a graph-theoretic framework. 
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1. Introduction 

General coordination mechanisms are essential tools for efficient reasoning in multi- 
agent AI systems. Coordination mechanisms are a major issue of study in the fields of 
mathemati,cal economics and game theory as well. Much work in these fields concentrates 
on the notion of an equilibrium. An equilibrium is a joint behavior of agents, where it 
is irrational for each agent to deviate from that behavior. The notion of an equilibrium 

discussed in the game theory and mathematical economics literature refers to agents which 
are expected utility maximizers. However, much work in AI has been concerned with 
more qualitative forms of rational decision making. In particular, work in AI has been 

*A preliminary version of this paper appears in the Proceedings of the 5th International Conference on 

Knowledge Representation and Reasoning. 

’ Email: moshet@ie.technion.ac.il. 

0004-3702/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved. 

PII: SOOO4-3702(98)00033-2 



2 M. Tennenholtz /Artijicial Intelligence 102 (1998) I-20 

concerned with agents which attempt to maximize their worst case payoff. Although, at 
first, this behavior may look questionable from a decision-theoretic perspective, it is known 
to capture the behavior of risk-averse agents [9,19,38], and it is appropriate in the context of 
qualitative decision theory [8,15,19,59]. Moreover, in [9] Brafman and Tennenholtz have 
shown general conditions under which an agent can be viewed as if it were a maximin agent 
(i.e., an agent which maximizes its worst case payoff). However, the corresponding notion 
of equilibrium has not yet been investigated. In this paper we introduce this notion and 
investigate its properties. The concept of qualitative equilibrium turns out to coincide with 
the notion of a stable social law, to be introduced later in this paper. For ease of exposition 
we introduce the notion of a stable social law in a self-contained fashion, as an extension 
to previous work on artificial social systems. 

Some work on multi-agent systems assumes that agents are controlled by a single 
entity which dictates their behavior at each point in time, while some other work is 
concerned with decentralized systems where no global controller exists. A significant 
part of the theory developed for decentralized multi-agent systems [7,17] deals with 
conflict resolution in multi-agent encounters. The basic theme of work on this subject 
is that in decentralized systems agents will reach states of conflict and appropriate 
negotiation mechanisms would be needed in order to resolve these conflicts. The 
result of the negotiation process is a deal that the agents will follow. Work in AI 
has been mostly concerned with agents that conform to agreed-upon deals. Agents 
may not follow irrational negotiation protocols, but will conform to deals obtained by 
following rational negotiation protocols [20,37,62].2 This differs from work in game- 
theory [25,48] where a joint strategy is considered unstable (and therefore unsatisfactory 

from a design perspective) if an agent has a rational incentive to deviate from it. 
The Artificial Social Systems approach (e.g., [45,57]) exposes a spectrum between a 
totally centralized approach and a totally decentralized approach to coordination. The 
basic idea of the Artificial Social Systems approach is to add a mechanism, called 
a social law, that will minimize the need for both centralized control and on-line 
resolution of conflicts. In a mobile robots setting, for example, such a social law may 
consist of various traffic constraints [56]. More generally, a social law is a set of 
restrictions on the agents’ activities which allow them enough freedom on one hand, 
but at the same time constrain them so that they will not interfere with each other. In 
particular, a social law makes certain conflicts unreachable, and as a result improves 
the system efficiency. Notice that mechanisms for conflict resolution can serve as part 
of the social law; they will be used in situations where conflicts can’t be prevented in 
advance. 

The motivation for the theory of artificial social systems has been the design of artificial 
multi-agent systems, and as such it assumes that the agents will obey the law supplied 
by the designer. However, if each agent is designed by a different designer then some 
laws might be considered irrational. Therefore, at the current stage, the artificial social 
systems approach and approaches to conflict resolution are somewhat complementary; the 
resolution of conflicts in multi-agent encounters is part of a more general theory of social 
laws, but the theory of artificial social systems has neglected the stability of social laws in 

* See [53] for a detailed discussion of this point. 
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multi-agent encounters. In this paper we wish to bridge part of the gap between the theory 

of artificial social systems and the theory of conflict resolution in multi-agent encounters, 

by considering stable social laws for multi-agent encounters. A social law for a multi- 

agent encounter is a restriction of the set of available actions (in the encounter) to a set of 

socially allowed actions. Stable social laws make deviation from them irrational. Notice 

that a convention is a particular type of a social law; a convention determines a particular 

joint action for the agents to follow (e.g., keep the right of the road), while a social law 

allows several such actions and prohibits others. As it turns out, this distinction is quite 

important and useful. 

We will discuss social laws for multi-agent encounters using a game-theoretic frame- 

work which is tailored for assumptions made in the AI literature, and especially in recent 

work on qualitative decision making. In particular, in most of this paper we will assume 

that the agents are risk-averse agents, which use the maximin decision criterion. 

More specifically, given a set of possible behaviors of the other agents, the aim of 

an agent is to optimize its worst case outcome assuming the other agents may follow 

any of these behaviors. This kind of behavior is appropriate where there is some ordinal 

relation on possible outcomes. In such situations all that matters to agents is the order of 

payoffs and not their exact value. The precise conditions under which such modelling is an 

appropriate: one are discussed in [9]. Moreover, as we discuss in Section 4, this modeling 

perspective is quite natural in many multi-agent systems, where a payoff corresponds to the 

achievement of a particular user’s specification. We will require that a social law suggested 

for a particular encounter will guarantee to the agents a certain payoff, and that it will 

be stable; there should be no incentive to deviate from it assuming the agents are risk- 

averse agents. Hence, a stable social law corresponds to a notion of qualitative equilibrium 

for risk-averse agents. In a later stage, we show how our discussion and results can be 

extended to other basic qualitative decision-making settings. 

We start by introducing our framework. In particular, in Section 3 we define the notion of 

stable social laws. In Section 4 we discuss the intuition and formal adequacy of maximin 

in multi-agent systems. Having the basic framework, in Section 5 we show that the set 

of multi-agent encounters for which a stable convention exists is a strict subset of the set 

of multi-agent encounters for which there is an appropriate stable social law; however, 

we show that there exists situations where no stable social law exists. Then, in Section 6 

we initiate a computational study of stable social laws; we formulate the corresponding 

computational problem and show that the general problem of coming up with a stable 

social law :IS intractable; the proof of our result sheds light on the structure of stable social 

laws; in addition, we point to an interesting restriction on our framework under which 

the synthesis of stable social laws is polynomial. We then return back to the question of 

the existence of stable social laws; in Section 7 we first show how this question can be 

formulated in standard graph-theoretic terms, and then expose a class of encounters where 

simple graph-theoretic conditions imply the existence of stable social laws. In Section 8 
we discuss how our ideas can be applied in other qualitative decision making contexts, and 

in Section ‘9 we further discuss the meaning of our study and results and the connection of 

our work to the existing literature. 
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2. The basic framework 

In this section we introduce our basic framework, which is built upon a basic game- 
theoretic model. 

2.1. The basic model 

In general AI planning systems, agents are assumed to perform conditional plans. 3 

A conditional plan is a (perhaps partial) function from the local state of an agent to 
action. Conditional plans can be treated as protocols in distributed systems terms, or as 

strategies in game-theoretic terms. In the sequel we will make use of a game-theoretic 
model; therefore, we will adopt the term strategy. 

Multi-agent encounters can be represented as a game. In this paper we will consider 
two-person games, where two agents participate in an encounter. 4 We will be concerned 
with finite games where each agent has a finite number of strategies. A joint strategy for the 
agents consists of a pair of strategies, one for each agent. Each joint strategy is associated 
with a certain payoff for each of the agents, as determined by their utilityfunctions. The 
above-mentioned terms are classical game-theoretic terms which capture general multi- 
agent encounters. 

Formally, we have: 

Definition 1. A game (or a multi-agent encounter) is a tuple (N, S, T, U1, Uz), where 

N = { 1,2) is a set of agents, S and T are the sets of strategies available to agents 1 and 
2 respectively, and lJ1 : S x T -+ IR and Uz : S x T + II% are utility functions for agents 1 
and 2, respectively. 

One interesting point refers to the knowledge of the agents about the structure of the 
game. In this work, we assume that agents are familiar with the sets of actions available 
to the different agents, but an agent might be aware only of its own payoff function. Our 
results are appropriate both for the case where the payoff functions are common-knowledge 
among the agents and for the case an agent knows only its individual payoff function. 

How should agents behave in a multi-agent encounter prescribed by a given game? The 
system’s designer may wish to guarantee to the agents a particular payoff. This guarantee is 
crucial for agents who are committed to obtain particular goals and to successfully perform 
particular tasks on behalf of their users in a multi-agent system. This brings us to the 
modeling of agents as maximin reasoners (see the discussion in Section 4). In Section 8 
we show how our results can be extended to other basic settings of qualitative decision 
making. 

Definition 2. Let S and T be the sets of strategies available to agent and 2 respectively, 
and let Vi be the utility function of agent i. Define U1 (s, T) = minter Ut (s, t) for s E S, 

3 Plans with complete information and other forms of plans will be taken as restrictions on the general form of 

plans considered in this paper; this point will not affect the discussion or results presented in this paper. 

4 The concepts defined in this paper can be easily extended to the case of k > 2 agents, where k is a constant. 
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and Uz(S, ,Y) = mintEs U2 (t , s) for s E T. The maximin value for agent 1 (respectively 2) is 
defined by max,,S Ul(s, T) (respectively maxrET Uz(S, t)). A strategy of agent i leading 
to the corresponding maximin value is called a maximin strategy for agent i . 

2.2. Conventions and social laws 

As we have mentioned an agent may wish to guarantee that a particular specification 
or user’s :requirements are indeed obtained. The achievement of a particular set of 
requirements will be associated with a particular payoff. The system designer (e.g., the 
government in certain applications, the system administrator or other mediators on other 
applications) can specify a social law that will enable the agents to obtain “reasonable” 

payoffs. One way of capturing such reasonable behavior is by requiring that the payoff for 

each agent will be at least t . 5 
Given a game and a requirement that the agents will be able to obtain a payoff of at least 

t, the designer may supply the agents with an appropriate convention: a joint strategy for 
which the utility for both agents is greater than or equal to t. A convention is a special 
case of a social law. A social law in a multi-agent encounter is a restriction on the set of 
strategies available to the agents; a convention will simply restrict the behavior to a one 
particular joint strategy. The role of the designer is to select a law that allows each agent at 
least one strategy which guarantees a payoff of at least t. 

Definition 3. Given a game g = (N, S, T, U1, Uz) and an efficiency parameter t, we define 

a social law to be a restriction of S to S C S, and of T to 7; C T. The social law is useful 
if the following hold: there exists s E S such that Ur (s, 7;) 2 t, and there exists k E T such 
that Clz(S, k) 3 t. A (useful) convention is a (useful) social law where IS] = ITI = 1. 

In general, a useful social law is a restriction on each agent’s activities which enables 

each agent to act individually and succeed reasonably well, as long as all the agents 
conform to the law (see the discussion and the general semantics in [46,57]). At this point 
the idea of using social laws for coordinating agents’ activities in a multi-agent encounter 
may seem a bit strange; why should we care about social laws if every efficiency degree 
which can be obtained by a social law can already be obtained by an appropriate simple 
convention? However, as we will later see, social laws can serve as much more useful 

entities than simple conventions for agents participating in a multi-agent encounter. 

3. Stable social laws 

The concept of social laws which has been discussed in previous work defines a general 

methodology for the design of multi-agent systems. In this work we are concerned with 
social laws for multi-agent encounters. Although that’s a most popular setting for the study 
of the resolution of conflicts, up to date the power of social laws has been illustrated in 

5 The case where different thresholds are associated with different agents can be treated similarly. 
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more complex settings [56,57]. As we shall see, social laws may serve as useful tools for 
multi-agent encounters as well. 

Definition 4. Given a game g = (N, S, T, U1 , U2) and an efficiency parameter q, a 

quasi-stable social Zaw is a useful social law (with respect to q) which restricts S 
to 3 and T to r, and satisfies the following: there is no s’ E S - 3 which satisfies 

&(s’,T) > max,,s]Q(s,T)l, and there is no t’ E T - T which satisfies U2(s, t’) > 

max,,+2@, t)). 

Our definition is in the spirit of classical game theory; we require that deviation by one 
agent will be irrational given that the other agent sticks to the suggested behavior. Notice 
that irrationality here refers to the notion of maximin behavior. Indeed, if an agent’s aim 
is to guarantee the fulfillment of his commitment to the user of obtaining payoff k, then it 
is irrational for him to deviate to a strategy that might risk this guaranteed performance. 6 
Hence, a quasi-stable social law will make a deviation from the social law irrational as 
long as the other agent obeys the law. However, the above definition of stability may not 
be satisfactory in our context. In a multi-agent encounter an agent has specific goals to 
obtain, and there is no reason to assume an agent will execute a strategy which yields to 
it a payoff which is lower than the payoff guaranteed to it by another strategy, assuming 
the other agent obeys the law. Putting it in other terms, given that we talk about a specific 
encounter with specific goals, there is no reason to include in the set of allowed strategies 
a strategy which is (maximin) dominated by another strategy in that set. This requirement 
is consistent with models of stable social situations discussed in the game theory literature 
[31]. Therefore we have: 

Definition 5. A quasi-stable social law is a stable social law if the payoff guaranteed 
to each of the agents is independent of the strategy (conforming to the law) it selects, 
as long as the other agent conforms to the social law (i.e., selects strategies allowed by 
the law). Namely, given a game g = (N, S, T, lJ1, UT) and an efficiency parameter q, 

the quasi-stable social law that restricts the agents to 3 and T respectively is a stable 

social Zaw if: for all ~1, s2 E 3, and tl, t2 E T, we have that Ul(sl, tl) = Ul(s2, t2) and 

U2@1, t1) = Uz(s2, t2>. 

Notice that a stable social law is an equilibrium concept which one may wish to 
associate with the maximin decision criterion. Hence, our study of stable social laws can be 
interpreted as a basic study of equilibria in the context of qualitative decision making. Our 
discussion and results can be extended to qualitative decision making contexts in which 

the agents adopt decision criteria which are different from maximin. We further discuss 
this point in Section 8. 

In the rest of this paper we discuss stable social laws. 7 Given a multi-agent encounter, 
a stable social law will guarantee to the agents a particular payoff, similarly to the way a 
particular payoff can be guaranteed by a simple convention. As it turns out however, the 

6 See also the discussion in Section 4. 

7 Similar results can be obtained when we consider quasi-stable social laws. 
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difference between social laws and conventions stems from the fact that social laws may be 
more stable than conventions in multi-agent encounters. This will be the topic of Section 5. 

4. A perqpective on safety level decisions 

The notion of equilibrium is of major importance in Economics. Although this concept 
is still a mlajor controversial issue (see [2]), it is the central solution concept discussed in 
the Economics literature. The concept of social laws is quite natural for many domains, 
and has been studied and applied in other works [4,5,46,47,57]. We believe however 
that the concept of stable social laws, defined in this paper, should be further discussed 

before a study of some of its properties is presented. A major concern one may have is 
the applicability of the maximin (safety level) kind of reasoning to multi-agent domains. 
Although we believe the study presented in this paper is of considerable importance due 
to the fact it complements previous work carried out in game theory and due to the fact 
it bridges some of the gap between the theory of social laws and the theory of conflict 
resolution, the applicability of the related concepts should be also discussed. 

Assume a system consists of several robots each of which is controlled by a different au- 
thority/programmer (as in Stanford’s Gofer project [ 131). Each such authority/programmer 
may be hired in order to obtain various tasks for different users/companies. A similar situa- 
tion arises when several software houses compete in a market, where they perform tasks on 
behalf of their clients. More generally, an agent needs to satisfy a user’s specification for 
a product, where the specification consists of a set of goals/tasks that should be obtained. 
This is the situation in current Automated Guided Vehicles systems, in current software 
projects, etc. In such systems a guarantee for a particular delivery is required. Assume 

there are II possible goals one may consider, a contract will specify k < n of them that an 
agent will (and must) obtain. The payment for the agent is a function of the guaranteed 
delivery. The above set of situations exist in many systems and can be best captured by 
maximin reasoning/analysis in multi-agent systems. In the related settings one may inter- 

pret a payoff as the number of goals that the agent obtains when the agents follow particular 
strategies. The maximin value is the number of goals that the agent can guarantee to obtain 
and that it will be willing to commit on achieving them. Expected value and Bayesian rea- 
soning are rarely used in the related systems, although these systems might not be purely 
competitive. Social laws that restrict agents’ behavior in a deterministic fashion are indeed 
used in the related settings. 

The above kind of analysis is quite intuitive, but a reader may attack it based on the 
interpretation we give to payoffs. Consider an interpretation as the one mentioned above, 
or a similar one (e.g., one may refer to the negation of the number of possible fails of 
a processor, as the payoff in a certain hardware system, etc.), the payoff function might 
not capture utility in standard economic terms. This concern however can be addressed 
by paying attention to the foundations of decision theory. Utilities are entities which are 
ascribed to an agent based on its actions. The fundamental work of Savage [54] serves as 
the justification for the use of maximal expected utility. In his work Savage supplies a set 
of conditions on an agent’s choice among actions, under which it can be viewed as if it had 
probabilities, utilities, and it had used expected utility maximization for action selection. 
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Therefore, from a formal perspective, there is no meaning to utilities without mentioning 
the decision criterion that is used. Indeed, Brafman and Tennenholtz [9,10] have shown 
sound and complete conditions under which an agent can be viewed as if it had a utility 
function under which it used the maximin decision criterion. Hence, one should be careful 
before dismissing maximin or other decision criteria based on the formal grounds supplied 
in previous work (see the discussion at [lO,l 11). On the other hand, as illustrated above, 
intuitive meanings for payoffs under which maximin reasoning is appropriate, exist for 
many interesting multi-agent domains. We will elaborate on the use of maximin and safety 

level decision making in the discussion session. 

5. Social laws versus conventions 

Having a definition of stable social laws, one may ask: what are these laws good 
for? If we wish to guarantee a certain payoff for the agents, why can not we look for 
stable conventions, i.e., select a joint strategy from which a deviation would be irrational, 
assuming such a strategy exists? 

The answer is supplied by the following result: 

Theorem 6. There exists games for which there are no stable conventions, but where 
appropn’ate stable social laws do exist. 

Proof. The proof follows by considering the following game: 

agent 2 

agent 1 A B c D 
n 

Assume the designer wishes to guarantee the payoff 1. The fact that no stable convention 
exists follows by case analysis. If the agents are required to perform (A, A) (i.e., each 
agent is required to perform A) or are required to perform (A, B) (i.e., agent 1 is required 
to perform A and agent 2 is required to perform B), then agent 2 may improve upon its 
situation by performing D; If the agents are required to perform (B, B) or are required to 
perform (B, A) then agent 2 can improve its situation by performing C . All other potential 
conventions are not useful, since at least one of the agents obtains a payoff which is less 
than 1. On the other hand, if we restrict both agents to perform actions taken from [A, B} 
then a payoff of 1 is guaranteed for both of the agents and no deviation is rational. If 
agent 2 performs C (respectively D) then it may lose if agent 1 has chosen to perform A 
(respectively B). If agent 1 performs C (respectively D) then it may lose if agent 2 has 
chosen to perform B (respectively A). •I 
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The above theorem reveals a new contribution of the theory of social laws: restricting 
the activities of the agents to a set of allowed actions rather than to a particular action 
is useful even in simple multi-agent encounters. This is due to the fact that social laws 
may be more stable than simple conventions. The intuition behind the above result is as 
follows. Although different strategies may lead to similar payoffs, different strategies may 
block different deviations by the agents. Therefore, the fact that the agent’s behavior is 
only partially defined may improve the system efficiency. Assume for example that there 
are two agents, each of which can invest its money using four options, A, B, C, or D. If 
they will invest only in options A and B then they will get reasonable payoffs. However, 
if they are told to invest in particular options, e.g., one is told to invest in A and the other 
is told to invest in B, then one of them may take this opportunity in order to gain more 
on behalf of the other using option C or D. But, if both C and D yield low payoffs when 
they are applied against A or B (although not against both of them), such deviation can 
be preventlzd by telling each agent to choose (nondeterministically) from among options 
A and B (i.e., by supplying the social law: “do not use C and D”, rather than pointing to 

particular investments). The reader may get additional understanding of this situation by 
considering the proof of Theorem 6. 

We have: shown that social laws are more stable than conventions. We can also show: 

Theorem ‘7. There exist games for which no stable social laws exist, for any selection of 

the eficiency parameter: 

Proof. The proof follows by considering the following game: 

agent 2 

agent 1 

7J$j-&J 

A case .analysis shows that no stable social law exists in the above-mentioned game. 
If both agents are required to perform A then agent 2 can improve upon its situation by 
performing B. If both agents are required to perform B then agent 2 can improve upon its 
situation by performing A. If agent 1 is required to perform A and agent 2 is required to 
perform B then agent 1 will improve its situation by adopting B. If agent 1 is required to 

perform B and agent 2 is required to perform A then agent 1 will improve its situation by 
performing A. Given that all of the payoffs in the matrix are different, it is clear that no law 
where an agent is required to perform either A or B (i.e., where both actions are allowed) 
will be stable. Notice that allowing both A and B is not stable, since one of the allowed 
actions wi 11 become more desirable than the other. ’ 

Combining the above we get that no stable social law exists. q 

8 The question of whether desirable behaviors can be obtained by social laws that are not stable according to OUT 

definition is beyond the scope of this paper. The type of stable sets we consider somewhat resemble the situation 

discussed by Shapley when considering the notion of block dominance [55]. 
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Hence, stable social laws are powerful but do not always exist. Given this observation, it 
may be of interest to supply a procedure for computing when a social law exists. Naturally, 
in cases where a stable social law exists it may be of interest to compute such a law. In 
addition, it may be of interest to characterize conditions for the existence of stable social 
laws. These are the topics of the following sections. 

6. Computing stable social laws 

In this section we take a look at the computation of stable social laws. In order to do 
so, we first need to decide on the representation of our input. We will use the standard 

game-theoretic representation in which a multi-agent encounter is represented by a game 
matrix. 

The problem of computing a Stable Social Law (SSLP) is defined as follows: 

Definition 8 (The Stable Social Law Problem [SSLP]). Given a multi-agent encounter g, 
and an efficiency parameter t, find a Stable Social Law which guarantees to the agents a 
payoff which is greater than or equal to t if such a law exists, and otherwise announce that 
no such law exists. 

Notice that if we restrict ourselves to simple conventions, the computational problem is 

easy; however, as we have observed, conventions are not as useful as social laws. As the 
following theorem shows this does not come without a cost. We are able to show: 

Theorem 9. The SSLP is NP-complete. 

Proof. The proof that the problem is in NP is straightforward. The proof that the problem 
is NP-hard is by reduction from 3-SAT [27]. Let p be a 3-CNP formula with m clauses. 
Our reduction will generate a 2-person game g, where the strategies for both agents are 

identical. The set of strategies for each agent is: cf , cf , . . . , cy , di (1 6 i 6 m), where 

each cf is associated with a different truth assignment to clause i (there are seven such 

assignments), and di is an additional distinguished strategy which is associated with clause 
i . We take the efficiency parameter t to be equal to 0, and let t’ be a positive real number. 
We will show that a stable social law for g exists if and only if cp is satisfiable. 

We take g to be a symmetric game, and specify the utility function of agent 1: 

(1) Ul(d;, di) = -t’ for all i, j. 

(2) U1 (ci , cj) = 0 iff c! and c> correspond to consistent assignments. 

(3) Ut (c!, c;) = --t’ iff cf and cf correspond to inconsistent assignments. 

(4) Ut (di, c;) = t’ for all i # j and every k. 

(5) Ut($, di) = -t’ for all i # j and every k. 

(6) .Vl (di, cf) = -t’ for every i and every k. 

(7) U1 (cf , di) = t’ for every i and every k. 
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Now, consider a truth assignment T which satisfies p. We can define a social law which 

leaves each agent only with the strategies which their corresponding assignments are as 

determined by T (and with no strategy of the form &). It is easy to see that we get a sta- 
ble social law; the social law guarantees a payoff of 0 since the agents are left only with 

“consistent strategies”, and deviations are irrational since there is a representative strategy 

of the form cb for each clause. 
If there exists a stable social law then it can not leave the agents with strategies of the 

form di . This is due to the fact that when such actions are performed a payoff that is lower 
than 0 might be obtained. In addition, such a law must leave each agent with exactly one 

strategy for each clause. At least one strategy for each clause is required since otherwise 

a deviation to some dj will become rational. If more than one strategy is allowed for each 
clause then the agents may execute “inconsistent strategies” (which lead to negative pay- 

offs). The allowed strategies need to be consistent (with respect to their corresponding 

assignments), since otherwise a payoff lower than 0 is possible. Hence, by combining the 

allowed strategies (i.e., their corresponding truth assignments) we get a satisfying assign- 

ment. 0 

The importance of the above theorem is twofold: first, it supplies an initial result in 
the computational study of stable social laws. Second, the proof of this result sheds 

additional light on the structure of stable social laws. As one can see, we need to restrict 

the behavior of agents, but still leave them with enough freedom for blocking deviations 
by the other agents. This observation is complementary to the observations made in [46] 

about the role of social laws. In [46] the authors refer to the goZden-mean problem in 

arti)cial .social systems, where the designer needs to restrict the behavior of agents in 

order that they won’t interfere with one another but leave them with enough freedom for 

obtaining socially acceptable goals. The setting described in this paper refers to multi-agent 
encounters and not to general artificial social systems, but augment the discussion with the 

concept of stability; As we have explained, the introduction of stability explores another 

aspect of the golden-mean problem. Further understanding of this structure is obtained in 
the following section, where we supply a graph-theoretic representation of stable social 

laws. 

Notice that in many situations the system’s input has a much more succinct represen- 
tation than the one discussed in the previous theorem. This points to the importance of 

the above hardness result. Indeed, it is not straightforward to show that the design of 

social laws in the framework of strategic-form representations is intractable [46]. Nev- 

ertheless, the above kind of representation has been found useful for modeling many 
multi-agent interactions [25]. Hence, given the previous theorem, it would be of inter- 

est to identify general cases where the problem of coming up with a stable social law 

(if such a law exists) is tractable. One case which is of interest is when the parties in- 

volved are of unequal power. One way of capturing this fact is by assuming that one 
party has many more strategies available to it than the other party does. Formally, we 
say that an agent is logarithmically bounded if the number of strategies available to it is 
O(log(n)jl where n is the number of strategies available to the other agent. In this case we 
can show: 
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Theorem 10. The SSLP when one of the agents is logarithmically bounded is polyno- 
mial. 9 

Proof. Without loss of generality let agent 1 be the logarithmically bounded agent. We can 
efficiently enumerate the set of possible restrictions on its strategies since there are only 
polynomially many such possibilities. For each such restriction r, let us denote the set of 
nonprohibited strategies by St (r). Given SI (r) we can gather the set of strategies of the 
other agent (i.e., agent 2) which guarantee a payoff greater than or equal to t (where t is 
the efficiency parameter) for agent 2 and exclude from them the ones that are dominated 
by other strategies of that agent (2). Let us denote this set of strategies by &(r). Now, if 

there are strategies in S1 (r) that are better than other strategies in St (r) or if there exists a 
strategy in S1 (r) which does not guarantee a payoff oft (given the previously generated set 
of strategies for agent 2) then we should move and try a new restriction r’ on the strategies 
of agent 1. If that’s not the case then we need to check whether there is a strategy for one 
of the agents which is not included in St (r) and f&(r) respectively, and may yield a better 
payoff for the respective agent than what is guaranteed under St (r) and &(r). If there is 
such a deviation then we should try another r’ (if exists) and otherwise we should stop (an 
appropriate law has been found). 

The above procedure exhausts in a systematic manner all possible stable social laws 
since each possible restriction on the behavior of agent I is checked, and for each such 

restriction the most general restriction on the second agent’s behavior which still may be 
possible is generated. This enumeration procedure is polynomial since agent 1 has only 
O(log(n)) strategies. Checking stability of a given set of restrictions is polynomial; all that 
we need to do in to compute for every action the worst case payoff which might be obtained 
when the other agent obeys the law; then we can compare these worst case payoffs to the 
payoff guaranteed by the law, in order to detect whether a rational deviation exists. q 

7. Graph-theoretic representations of stable social laws 

We can learn about the structure of stable social laws by studying the reduction used 
in Theorem 9. More generally, the study of a new equilibrium concept and of its use can 
greatly benefit from representation theorems which show what does this concept mean 
in terms of known concepts. In addition, in the context of this particular work, such 
representation theorems can supply conditions for the existence of stable social laws. The 
reduction used in the proof of Theorem 9 shows that a special case of the problem of 
finding a stable social law is isomorphic to a well-known problem. This has been useful 
for proving the above-mentionedresult. However, it would be of interest to characterize the 
general Stable Social Laws concept by means of well-known terminology. In particular, in 
this section we make use of graph-theoretic terms in order to characterize the stable social 
law concept. 

9 The results presented in the previous section and Theorem 9 can be easily extended to the case of k 2 2 

agents. The technique used in the proof of Theorem 10 can be used also for the case k > 3 if there is only one 
party which is more powerful than the others. 
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We will make use of the following standard terms: 

Definition. 11. Let G = (V, E) be a graph, where V is a set of nodes, and E C V2 is a set 
of edges. G is undirected if, for all ~1, u2 E V, (~1, ~2) E E iff (~2, ~1) E E, and is directed 

otherwise. A set V’ C V is an independent set if there are no v’, v” E V’ which satisfy 
(v’, u”) E E. A set V’ c V is a clique if (u’, v”) E E for all u’, u” E V’. A node u E V 

is nonisohzted relative to V’ C V if there is a vertex u’ E V’ such that (v, v’) E E. A set 
V’ E V is a dominating set if for each node v’ E V - V’ there is a node uN E V’ such that 
(v’, v”) E E. A node v E V is a sink if there is no u’ such that (u, v’) E E, The graph G is 
k-colorabl’e if we can color the nodes of the graph with k colors in a way that (v, v’) E E 

implies that u and u’ have different colors. 

We would now like to make a connection between the above-mentioned graph-theoretic 
terms and our notion of a stable social law. In the sequel we will be concerned with games 

where the sets of strategies, S, available to the agents are identical. We will also assume the 
game is symmetric in the sense that Ut (s, t) = Q(t, s) (i.e., the outcome of the agents is 
independent of their names). We will be interested in social laws that are fair, in the sense 
that if a strategy is prohibited for one agent then it is prohibited for all agents. For ease 
of exposition we will be concerned with social laws guaranteeing the value t and no more 

than t. 

Definition 12. Given a game g and an efficiency parameter t, let Gt = (V, El), G:! = 
(V, E2), G3 = (V, E3) be directed graphs where V is associated with the set of strategies 

S, and Ei is defined as follows: (s, q) E El iff 171 (s, q) 3 t; (s, q) E E2 iff Ut (s, q) = t; 

(s, 4) E E3 iff UI (s, 4) < t. 

Given the above-mentioned graphs which are built based on the game g and the 
efficiency parameter t, we can show the connection between stable social laws and standard 

graph-theoretic concepts: 

Theorem 13. Given a game g and an efjiciency parameter t, the corresponding graphs 

GI, G2, G3 sutisfy the following: a stable social law for g exists #there is a subset V’ of 
the nodes of the related graphs, such that V’ is a clique in G 1, a dominating set in G3, and 

all nodes in V’ are nonisolated, relative to V’, in G2. 

Proof. Assume that V’ satisfying the above properties exists; one can easily check that by 
prohibiting all strategies in V - V’ we get a stable social law. The efficiency is guaranteed 
by the requirement from Gt , and the fact that no deviation is rational is guaranteed by the 
requirement from G3. The fact that no allowed action can be ignored is guaranteed by the 
requirement from G2. 

If there exists a stable social law then a payoff greater than or equal to t should 
be guaranteed regardless of the (allowed) actions selected; this implies that the nodes 
associated with the allowed actions constitute a clique in Gt . Similarly, since no deviation 
is rational these nodes should correspond to a dominating set in G3. In addition, since there 
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is no reason to consider behaviors which are inferior to others in a stable social law we get 
that no node which corresponds to an allowed strategy would be isolated in G2. q 

The above theorem supplies an additional graph-theoretic understanding of the notion 
of stable social laws. A further look at such representations enables us to prove additional 

general existence theorems for stable social laws. One interesting general type of multi- 
agent encounters refers to games which are a combination of pure coordination and zero- 

sum games. The importance of such type of games is obvious; they allow agents either 

to agree and obtain “reasonable payoff” or to “fight” for “high payoff” taking the risk of 

obtaining “low payoff”. These basic games are formally defined as follows: 

Definition 14. Assuming without loss of generality that the efficiency parameter t equals 

0, a symmetric game g is a mixed coordination-competition game, if the utility functions 
satisfy: 

(1) Ur(s,s) =Oforeverys E S. 

(2) Ur(s, q) > 0 iff Ur (q, s) < 0 for every s, q E S. 

An interesting point about mixed coordination-competition games is that they can be 
represented by a single graph, 6, which is defined as follows: the nodes of G = (v, ,??) 

correspond to the different strategies, and the set of edges l? is defined as follows: (s, t) E I? 
iff Ul (s, t) < 0. Given this graph structure, we can prove the existence of stable social laws 

for an interesting class of encounters: 

Theorem 15. Given a mixed coordination-competition game g, ifthe corresponding graph 

?? has a sink or is 2-colorable then an appropriate stable social law exists. 

Proof. If there is a sink in the graph then we can choose the corresponding strategy as 
a convention (i.e., both agents will be required to play only the corresponding strategy). 

Otherwise, if the graph is 2-colorable then we can color the graph by red and blue and 
prohibit all (and only) red strategies (for both agents). Clearly, two blue strategies will 
yield the desired payoff since the graph is 2-colorable. No deviation to red strategy is 

rational since the graph has no sinks and neighbors of a red strategy should be blue (i.e., 
a deviation may result in a negative payoff). q 

8. Other qualitative equilibria 

The previous sections have been concerned with qualitative equilibria, where the 
decision criterion is the maximin decision criterion. As we have mentioned before, similar 
observations and results do hold for other decision criteria as well. In this section we take 
a look at two other basic decision criteria, the minimax regret decision criterion, and the 
competitive ratio decision criterion, and show how our previous study can be adapted to 
the context of these decision criteria as well. 
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Definition 16. Let Si be a set of strategies available to agent i, and let Ui be the utility 
function of agent i . Given s E St, and q E S2, define 

ul(S,q,Sl)=~~ul(t,q)-ul(s,q). 

Given q E S1 and s E S2 define 

u2(4 s, S2) = z=&u2k, t) - u2(q, s>. 

The minimox regret valuefor agent 1 (respectively 2) is defined by m&S, maxqEs2 u 1 (s, q, 

Sl) (respectively min,,sZ max+s, uz(q, t, ST)). A strategy of agent i leading to the corre- 
sponding minimax regret value is called a minimax regret strategy for agent i . 

The mirdmax regret decision criterion is a basic decision criterion [38,41] which 
captures the following idea. Given a set of available strategies for agent i, if the other 
agent, j, would have known the actual strategy to be performed by agent i then it could 
choose a cclrresponding optimal strategy. The amount of regret of agent j when performing 
a strategy :sj when agent i performs a strategy si is the lost obtained by performing sj 
instead of performing the optimal strategy against si available to agent j. For each strategy 
of agent j one can compute the maximal regret this agent may have while performing this 
strategy; the strategy which minimizes the maximal regret is the minimax regret strategy. 
The intuition behind this decision rule is that the agent would not like to lose much relative 
to the case where it would have known the other agent’s action. 

A related decision rule, the competitive ratio decision rule, which is popular in the 

theoretical computer science literature [49], and which has been recently discussed in 
the AI literature [44], is similar to the minimax regret decision rule; in this decision rule 
we consider the ratio between the payoff obtained by a particular strategy to the payoff 
obtained by the corresponding optimal one, instead of considering the difference between 

these payoffs. 
The definition of a useful social law remains as in the previous section, but the definition 

of quasi-stable social laws and of stable social laws will be based on minimax regret or 
competitive ratio respectively. Hence, an agent may deviate from the prescribed social law 
if it has a strategy which leads to a minimax regret (or to a competitive ratio) value which is 
lower than the one obtained by conforming to the law. The rationale of the related settings 
is that the designer may wish to guarantee a particular payoff for the agents, but an agent 
may not be risk-averse and might use decision criteria such as the minimax regret or the 

competitive ratio while selecting its action. 
As it turns out, social laws are more stable than simple conventions also when the agents 

adopt the minimax regret or the competitive ratio decision rules. Consider the game matrix 
of the proof of Theorem 6. If the agents are required to perform the action A, then the 
minimax regret value for an agent who considers deviating is obtained by the action C. 
Similar results are obtained whenever each agent is required to stick to a particular action. 
However, if the agents are allowed to perform “only A or B” then the maximal regret 
values of both C and D (2) are lower than the maximal regret values of A and B (l), and 
we get a stable social law. A similar result can be obtained for the case of the competitive 
ratio decision criterion. 
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The above discussion shows that the basic results obtained in the context of qualitative 
equilibria for risk-averse agents, can be obtained also in other contexts of qualitative 
decision-making. As it turns out, the computational results obtained in the case of maximin 
can also be extended to the case of minimax regret and competitive ratio. The key idea 
which enables to extend Theorem 9 and its proof to the case of minimax regret and 
competitive ratio is the following one. For ease of exposition, we present it for the case 
of minimax regret; the case of competitive ratio is treated similarly. The payoffs in the 

proof of Theorem 9 can be either 0 (i.e., satisfactory), t (i.e., high), and -t (i.e., low). In 
order to have a similar proof in the context of minimax regret we will change the negative 
payoffs from -t to -2t (i.e., very low). Given this modification, the minimax regret of 
strategies which are not part of the law mentioned in the proof of Theorem 9 will be at 
least 2t, while by conforming to the law the agents will have a regret of at most t; this 
modification is needed in order to guarantee the stability of the laws prescribed in our 
reduction. The other details of the reduction and proof of Theorem 9 remain as in the case 
of muximin. A modification of the proof of Theorem 10 to the context of minimax regret 
is quite straightforward as well. In this case we still enumerate the possible restrictions 
on the strategies of agent 1, but when collecting the strategies of agent 2 we have to be 
careful to gather only the strategies which minimize the maximal regret of agent 2 given the 
corresponding restriction on the strategies of agent 1. Having this observation, Theorem 10 
can be proved for the case of minimax regret as well. 

9. Discussion 

In this work we have introduced a theory of stable social laws, or qualitative equilibria, 
for qualitative decision makers. Our work bridges some of the gap between work on 
Artificial Social Systems and work on conflict resolution in game theory and AI. Social 
laws have been shown to be a basic and useful tool for the coordination of multi-agent 
systems [4,5,12,42,45,47,57]. However, the stability of social laws in a system of rational 
agents has been neglected so far. This work extends previous work on social laws for 
artificial agent societies by considering stable social laws for multi-agent encounters. 

Two major lines of research related to our work are work in the field of game theory and 
work in the field of Distributed Artificial Intelligence [DAI]. Related work on rational deals 
and negotiations in DA1 (e.g., [37,51,62]) can be viewed as contributions to game theory. 
A very interesting property of this work is that it considers deals among rational agents 
who will not deviate from agreed-upon deals. to In difference to this assumption, our work 
is concerned with agents who will deviate from agreed-upon deals if they have a rational 
incentive to do so. The safety level kind of reasoning/analysis is not new of course to 
computer science. This is also true for its (somewhat implicit) use in multi-agent systems. 
In fact, work in software engineering has used a social laws paradigm for the imposition 
of protocols in distributed systems [42,43]. The idea in this work is that a desired behavior 
of an agent should be guaranteed regardless of the behavior of other agents (obeying the 
corresponding law). Naturally, the different specifications which may be satisfied (i.e., the 

lo This is not to say that other assumptions are not treated by the DA1 literature; see, for example [53]. 
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sets of goals/tasks which may be obtained) by each agent might be of different quality, 
which can be captured by corresponding payoffs. In this case the performance guarantee, 

that is a crucial factor in computerized systems, can be captured by maximin-like analysis. 
Much work in game theory has been concerned with devising rational conventions for 

a group of rational agents; a rational agent may deviate from a prescribed joint strategy 
if this deviation will improve its own situation. More specifically, much work in game 

theory [25,38,48] has been devoted to the study of equilibrium in games; an equilibrium 

will have the property that there is no rational incentive for an agent to deviate from the 
equilibriurn as long as other agents stick to it. The notion of an equilibrium has been 

adopted to the AI and DA1 literature in various settings (e.g., [61]), as part of a general 

and important attempt to introduce social and organizational metaphors into the AI context 

[14,16,18,:21,24,28,35,36,39,58]. A central notion in this regard is the notion of a rational 

agent adopted from the decision/game theory literature. Most work in game theory has 

associated the notion of a rational agent with the notion of expected utility maximization. 

This is not however the usual way a rational agent is viewed in the AI literature, such as in 

work on conditional planning [22,29,50,52,60]. Moreover, much of the field of knowledge 

representalion and reasoning is concerned with qualitative notions of decision making, 

which are different from expected utility maximization; this is true for work in belief 
revision [26], nonmonotonic reasoning [30], qualitative physics [23], as well as for work 

on qualitative decision theory [8,11,15,19,38,59]. Work on safety level reasoning/analysis 

gets increasing attention in mainstream game theory in the recent years. Several works, 

including [3,6,32,40], and more recently [1,34], are concerned with long-run solution 

concepts, in which agents attempt to get closer to a safety level of a game. In the related 

work an agent is not able to observe the utility function of the other agents (although he 

may be familiar with the related strategies). Although one way to address the related issue 

is by using the theory of types developed by Harsanyi [33], the use of safety level analysis 
in such settings is a natural approach. Notice that our work may fit nicely also with the 

assumption that each agent knows only its utility function. 

One may wish to explore the connections between the notion of stable social laws and the 

notion of mixed strategies (and equilibria in mixed strategies) discussed in game theory. 

However, ,a direct comparison between these concepts seems quite problematic. This is 

due to the fact that the interpretations of the utility function for maximin agents and for 

expected utility maximizers are different (see the discussion is Section 4, as well as [lo]). 

Notice thar in our context the actual selection among the strategies available to an agent is 

modelled als a nondeterministic choice rather than a probabilistic one. The nondeterminism 

refers to parameters which might be unknown to the designer and to the other agents and 

which may change from time to time. One may however wish to find some functional 
connections between mixed strategies and stable social laws, e.g., a stable social law may 

be the support of a mixed strategy equilibrium. Unfortunately, we were not able to prove or 

disprove such a claim. On the other hand, the idea of considering sets of strategies rather 
than a mixed strategy in equilibrium is consistent with the theory of social situations [31]. 
The restriction to a set of strategies (i.e., prohibiting some of the strategies) rather than 

pointing to a probabilistic mixture is a basic idea in the work of Minsky on social rules 
in the context of software engineering [42,43]. Needless to say that the enforcement of a 
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social law is much more practical than the enforcement of a mixed strategy, due to the fact 
that coin flippings can not be usually observed by an outside observer. 

Using a game-theoretic terminology, in this work we developed an equilibrium theory 
for qualitative decision makers, and in particular for risk-averse agents [9,19,38]. Our 
theory and results can therefore be interpreted both as an extension to the theory of 
Social Laws presented in the AI literature, as well as a contribution to the foundations of 
discrete/qualitative decision/game theory. We hope it can lead to further cross-fertilization 
between these fields. 
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