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Abstract. The study of congestion games is central to the interplay between
computer science and game theory. However, most work in this context does
not deal with possible deviations by coalitions of players, a significant issue one
may wish to consider. In order to deal with this issue we study the existence of
strong and correlated strong equilibria in monotone congestion games. Our study
of strong equilibrium deals with monotone-increasing congestion games, comple-
menting the results obtained by Holzman and Law-Yone on monotone-decreasing
congestion games. We then present a study of correlated-strong equilibrium for
both decreasing and increasing monotone congestion games.
Keywords: Congestion Games, Strong Equilibrium.

1 Introduction and overview of results

A congestion game (Rosenthal, [7]) is defined as follows: A finite set of players1, N =
{1, ..., n}; A finite non-empty set of facilities, M ; For each player i ∈ N a non-empty
set Ai ⊆ 2M , which is the set of actions available to player i (an action is a subset
of the facilities). We denote by A the set of all possible action profiles (A =

∏
i∈N

Ai).

With every facility m ∈ M and integer number 1 ≤ k ≤ n a real number vm(k) is
associated, having the following interpretation: vm(k) is the utility to each user of m if
the total number of users of m is k. Let a ∈ A; the (|M | dimensional) congestion vector
corresponding to a is σ(a) = (σm(a))m∈M where σm(a) = |{i|m ∈ ai}|. The utility
function of player i, ui : A → R is defined as follows: ui(a) =

∑
m∈ai

vm(σm(a)). It is

assumed that all players try to maximize their utility. Therefore, equilibrium analysis is
typically used for the study of these settings.

Congestion games have become a central topic of study in the interplay between
computer science and game theory (see e.g. [1, 9, 8, 6]). Congestion games possess
some interesting properties. In particular, Rosenthal [7] showed that every congestion
game possesses a pure strategy Nash equilibrium. In this paper we would like to explore
the possibility of replacing Nash equilibrium with stronger solution concepts.

One particular weakness of Nash equilibrium is its vulnerability to deviations by
coalitions of players. This issue is addressed in the solution concept known as strong
equilibrium (Aumann, [2]): Let us denote the projection of a ∈ A on the set of players
S ⊆ N (resp. on N \ S) by aS (resp. by a−S). We say that a profile of actions a∗ ∈ A

1 We will use the terms player and agent interchangeably.



is a strong equilibrium (SE) if for no non-empty coalition S ⊆ N there is a choice of
actions ai ∈ Ai, i ∈ S such that ∀i ∈ S ui(aS , a∗−S) > ui(a∗).

Such profiles are indeed much more stable than simple Nash equilibria, and there-
fore their existence is a very desirable property; however, simple examples show that
congestion games in general need not possess a strong equilibrium (in fact, the well-
known Prisoner’s Dilemma may be obtained as a congestion game).

The above definition applies to the case where the players may use only pure strate-
gies. A natural extension of Aumann’s definition of strong equilibrium to settings where
mixed strategies are available is to apply the original definition to the mixed extension
of the original game. Formally, we say that a profile of actions a∗ ∈

∏
i∈N

∆(Ai) is

a mixed strong equilibrium (MSE) if for no non-empty coalition S ⊆ N there is a
choice of actions ai ∈ ∆(Ai), i ∈ S such that ∀i ∈ S Ui(aS , a∗−S) > Ui(a∗). Here,
by ∆(Ai) we mean the set of all probability distributions overAi, and Ui denotes the
expected utility of player i.

There are two important things to note when considering the definition of MSE.
First, notice that unlike the extension of Nash equilibrium to mixed strategies, this def-
inition yields a stronger solution concept even when applied to pure strategy profiles;
i.e., a pure profile of actions may be a strong equilibrium, but not a mixed strong equi-
librium. A second point to notice is that in the definition of MSE we assume that the
players cannot use correlated mixed strategies, i.e. choose their actions using a joint
probability distribution. However, in many settings this assumption is too restrictive: if
we assume that a coalition of players has the means to choose a coordinated profile of
actions, it is natural to assume that they have means of communication that would also
allow them to coordinate their actions using joint coin flips. The above leads us to the
following definition: we say that a∗ ∈ ∆(A) is a correlated strong equilibrium (CSE)
if for no non-empty coalition S ⊆ N there is a choice of actions aS ∈ ∆(

∏
i∈S

Ai),

such that ∀i ∈ S Ui(aS , a∗−S) > Ui(a∗). This definition is strictly stronger than the
previous one: every CSE is also an MSE, but not vice versa.2

The aim of this article is to explore the conditions for existence of strong and corre-
lated strong equilibria within two most interesting and central subclasses of congestion
games:

We call a congestion game monotone-increasing (or simply increasing) if ∀m ∈
M, 1 ≤ k < n vm(k) ≤ vm(k + 1). These games model settings where congestion
has a positive effect on the players, e.g. settings in which the cost of using a facility is
shared between its users.

We call a congestion game monotone-decreasing (or simply decreasing) if ∀m ∈
M, 1 ≤ k < n vm(k) ≥ vm(k + 1). These games model settings where congestion has
a negative effect on the players, e.g. routing games, where cost represents latency.

2 Notice that although we allow a∗ to be a correlated profile, CSE doesn’t extend the notion of
correlated Nash equilibrium [3] to the context of deviations by coalitions: our solution concept
is weaker, since we assume that the deviators cannot see the ”signals” that result from the
current realization. However, in the scope of this article, generalizing Aumann’s definition
would yield the same results.



Ron Holzman and Nissan Law-Yone [5, 4] explored the conditions for existence of
strong equilibria in monotone decreasing congestion games. They start by observing
that a strong equilibrium always exists in the case where all strategies are singletons.
Following that, they explore the structural properties of the strategy sets that are nec-
essary and sufficient to guarantee the existence of strong equilibria. These structural
properties may, for example, refer to the underlying graph structure in route selection
games.

In this paper we first explore the conditions for existence of strong equilibria in
monotone increasing congestion games. Then, we extend the study of both the decreas-
ing and increasing settings to the solution concept of correlated strong equilibrium. Our
contributions can therefore be described by the following table:

Main results:
Throughout this paper, when we refer to strong equilibrium, we present the results

of Holzman and Law-Yone [5] for the decreasing setting alongside our results for the
increasing setting. This is done for the sake of viewing the complete picture and ease of
comparing between the two settings.

In section 2 we explore the case of singleton strategies, i.e. resource selection games
where each player should choose a single resource from a set of resources available to
him. In the decreasing setting Holzman and Law-Yone observe that every Nash equilib-
rium of the game is, in fact, a strong equilibrium. For the increasing setting, we present
an efficient algorithm for constructing a strong equilibrium; however, unlike in the de-
creasing setting, we show that not every Nash equilibrium of the game is strong.

In section 3 we develop a notation, congestion game forms, that allows us to speak
about the underlying structure of congestion games; using this notation we will be able
to formalize statements such as “a certain structural property is necessary and sufficient
for the existence of SE in all games with that underlying structure”. We define two sub-
structures, which we call d-bad configuration and i-bad configuration and prove some
simple properties of strategy spaces that avoid bad configurations. These properties will
serve as a technical tool in some of our proofs.

Section 4 explores the conditions for existence of strong equilibrium. In the de-
creasing setting, [5] shows that a SE always exists if and only if d-bad configurations
are avoided. In the increasing setting we show that a SE always exists if and only if
i-bad configurations are avoided, in which case the equilibrium can be efficiently com-
puted. As we will show, our results imply that avoiding i-bad configurations makes the
games essentially isomorphic to the case of singleton strategies.

Section 5 deals with the concept of correlated strong equilibrium. We show that a
CSE might not be achievable even in simple (two players, two strategies) examples of



the decreasing setting. In the increasing setting, though, we show that all our results
regarding SE still hold with CSE, namely that a CSE always exists if and only if i-bad
configurations are avoided, in which case it can be efficiently computed. Moreover, we
show that in this case every SE of the game is also a CSE (a claim which doesn’t hold
if i-bad configurations are not avoided).

Together, our results provide full characterization for the connection between the
underlying game structure and the existence of SE and CSE for both the decreasing and
the increasing cases.

2 SE: the case of singleton strategies

Here we investigate the case in which only singleton strategies are allowed, i.e. resource
selection games where each player should choose a facility from among a set of facili-
ties available to him.3

First, recall the result for the decreasing case:

Theorem 1. [5] Let G be a monotone decreasing congestion game in which all strate-
gies are singletons. Then G possesses a strong equilibrium; moreover, every Nash equi-
librium of G is SE.

We now address the existence of SE in monotone-increasing congestion games:

Theorem 2. Let G be a monotone increasing congestion game in which all strategies
are singletons. Then G possesses a strong equilibrium; moreover, a SE can be efficiently
computed.

Proof (sketch): Consider the following algorithm for computing a strong equilibrium:
at each step, we assign a facility to a non empty subset of the remaining players, in the
following way: for each facility m ∈ M , we compute vm(k), where k is the maximal
number of the remaining players that can choose {m} as their strategy. We choose m
for which such vm(k) is maximal, and assign {m} to all the players that can choose it.
We continue in the same fashion until all players are assigned a facility.

We claim that the resulting strategy profile is a SE. We prove by induction on the
steps of the algorithm, that no player can belong to a deviating coalition in which his
payoff strictly increases: in the first step of the algorithm, this is obvious because each
assigned player gets the highest possible payoff in the game (due to monotonicity); at
subsequent steps, we use the induction hypothesis and assume that all players from the
previous steps don’t belong to the deviating coalition, i.e. all of them use the facilities
they were assigned; but this means that the game is effectively reduced to the remaining
players and the remaining facilities, so the same reasoning applies: due to monotonicity,
each assigned player gets the highest possible payoff in the (new) game. Regarding the

3 In particular, this classical setting can model simple route selection games. In a simple route
selection game each player has to select a link for reaching from source to target in a graph
consisting of several parallel links. In general, each player may have a different subset of the
links that he may use.



complexity of the algorithm, it is trivial to verify that the most straightforward imple-
mentation runs in O(m2n2); it is also a simple exercise to construct an implementation
that runs in O(mn). ut

Unlike in the decreasing setting, not every Nash equilibrium (NE) of the decreasing
game is a SE. Consider, for example, an instance with two facilities {m1,m2} and two
players, where the cost of a facility is shared equally between its users. The cost of m1

is 2, and the cost of m2 is 1. Both facilities are available to both players. Then, the
profile (m1,m1) is a NE, since each player cannot decrease his cost of 1 by deviating
alone; but it is not a SE, since if both players deviate to m2, their cost decreases to 0.5.

Fig. 1. SE doesn’t exist

We will now illustrate why our proof of Thm. 2 wouldn’t hold in the general case
(where the strategies don’t have to be singletons). The situation is best illustrated by
an example. Fig.1 presents a graph of an instance of a network design game in the
increasing setting: there are two agents, who both need to construct a path from s to t,
using the edges available in the graph. The construction cost of each edge (the number
near the edge) is shared equally between the agents. Each agent wants to minimize his
construction cost; however, agent 1 cannot use edge a, and agent 2 cannot use edge b.

Our algorithm assigns {c, d} to 1 and {c, d} to 2, with a payoff of 3 each. This
however is not an SE; in fact there is no SE in this game; to see this observe that
playing {c, b} is dominant for agent 1, and given that playing {a} is dominant for agent
2, which leads to a payoff of (4,3.5), which is smaller than (3,3). Therefore, a SE does
not exist in this instance.



3 Congestion game forms, bad configurations and tree
representations

In this section we extend upon the definitions and notations introduced in [5] in order
to provide some basic tools that will be useful for our characterization results.

A congestion game form is a tuple F = (M,N,A) where M is the set of facil-
ities, N = {1, ..., n} is the set of players, and A ⊆ 2M . A congestion game G =
(M,N, {Ai}, {vm(k)}) is said to be derived from F if A =

⋃
i∈N

Ai. Given a conges-

tion game form F , one can derive from it a whole family of (monotone, increasing or
decreasing) congestion games by assigning (monotone, increasing or decreasing) utility
levels to the facilities and assigning specific strategy sets to the players. The congestion
game form represents the underlying structure of the strategy spaces; for example, in the
network design setting, it is the game graph. We say that a congestion game form F is
strongly consistent if every monotone congestion game derived from F possesses a SE
(we will always specify which setting, increasing or decreasing, is under discussion).
We say that a congestion game form F is strong-Nash equivalent if in every monotone
congestion game derived from F every NE is a SE. Similarly, we say that a congestion
game form F is correlated strongly consistent if every monotone congestion game de-
rived from F possesses a CSE; F is correlated-strong equivalent if in every monotone
congestion game derived from F every SE is a CSE.

In this terminology, the results of section 2 state: if F = (M,N,A) is a congestion
game form in the decreasing setting in which A contains only singletons, then F is
strong-Nash equivalent; if F = (M,N,A) is a congestion game form in the increasing
setting in which A contains only singletons, then F is strongly consistent.

We are interested in a property of A which is both necessary and sufficient for F to
be strongly consistent.

Let A ⊆ 2M . A d-bad configuration in A is a tuple (x, y;X, Y, Z) where:

x, y ∈ M
X, Y,Z ∈ A

and the following relations hold:

x ∈ X y /∈ X
x /∈ Y y ∈ Y
x ∈ Z y ∈ Z

Thus, two facilities x, y give rise to a d-bad configuration if there is a strategy that uses
both x and y, there is a strategy that uses x without y, and there is a strategy that uses y
without x. We call A ⊆ 2M d-good if it does not contain a d-bad configuration.

An i-bad configuration in A is a tuple (x, y;X, Y, Z) where:

x, y ∈ M
X, Y,Z ∈ A

and the following relations hold:

x ∈ X y /∈ X
x /∈ Y
x ∈ Z y ∈ Z



Thus, two facilities x, y give rise to an i-bad configuration if there is a strategy that uses
both x and y, there is a strategy that uses x without y, and there is a strategy that avoids
x (with, or without using y). In Fig.1, for example, the edges c, d give rise to a i-bad
configuration. We call A ⊆ 2M i-good if it does not contain an i-bad configuration. In
particular, a d-bad configuration is an i-bad configuration, so A is i-good implies that
A is d-good.

By an M -tree, we shall mean the following:

– a tree with a root r
– a labeling of the nodes of the tree (except r) by elements of M ; not all elements of

M must appear, but each can appear at most once
– a designated subset D of the nodes, which contains all terminal nodes (and possibly

other nodes as well).

An example of an M -tree appears in Fig. 2.

Fig. 2. An M -tree. The labels appear to the left of the nodes; the nodes in D are blackened

Given an M -tree T , we associate with it a set A of strategies on M , as follows: to
each node in D there corresponds a strategy in A consisting of the labels which appear
on the path from r to that node. For instance, if T is the M -tree depicted in Fig. 2, then
A = {{a, b}, {a, b, c}, {a, d}, {a, e, f}, {a, e, g}, {h}, {h, i},
{h, j, k}}. If r ∈ D, it means that ∅ ∈ A. If A is obtained from T in this way, we say
that T is a tree-representation of A.

Lemma 1. [5] Let A be a nonempty set of strategies on M. Then A is d-good if and only
if it has a tree-representation.

Given a congestion game form F = (M,N,A), a tree representation of A gives
us a convenient method of reasoning about equilibria, since in this case any congestion
game derived from F is isomorphic to a tree-game: a game where given an M -tree,



players must build a path from r to one of the nodes in D, and the strategies of each
player can be represented by the subset of D that he is allowed to use.

Given a tree representation of A, a non-leaf node v is called split if v ∈ D or v has
more than one child (intuition: a path from r that reaches v has more than one way to be
extended to a path leading to a node in D). A tree representation of A is called simple
if no path from r to a node in D contains more than one split node. The general case of
a simple tree representation is depicted in Fig. 3.

Fig. 3. The general case of a simple M -tree. The grayed node v can belong to D and can be
outside of D; The dots represent chains of nodes (could be empty), where no intermediate node
belongs to D.

We can now prove:

Lemma 2. Let A be a nonempty set of strategies on M. Then A is i-good if and only if
it has a simple tree-representation.

Proof: Suppose A has a simple tree representation, and suppose, for contradiction, that
A also has an i-bad configuration (x, y;X, Y, Z). Since x, y ∈ Z, both x and y appear
on the path from r to a node in D that corresponds to Z; also, x must occur above y on
this path, since a path that corresponds to X contains x, but not y. This means that a split
node v must exist between x and y on the path of Z; but since the path corresponding
to Y doesn’t include x, this means another split node v′ must exist above x as well. So,
the path of Z contains two split nodes – contradiction.

Suppose now that A is i-good. Then, it is also d-good, so by Lemma 1 A has a tree
representation. Suppose, for contradiction, that this tree representation is not simple; i.e.
there exists a path (corresponding to some strategy Z in A) with two split nodes, x and
x′. W.l.o.g., suppose x′ is above x. Since x is split, it has a child, y. Since x′ is split and
is above x, there exists a path (corresponding to some strategy Y ) that doesn’t contain
x. Since x is split, there exists a path (corresponding to some strategy X) that contains
x, but not y. Thus, (x, y;X, Y, Z) is an i-bad configuration – contradiction. ut



4 Structural characterization of existence of SE

Recall the following:

Theorem 3. [5] Consider the monotone decreasing setting, and let F be a congestion
game form with n ≥ 2. Then, F is strongly consistent if and only if A is d-good.

We now show:

Theorem 4. Consider the monotone increasing setting, and let F = (M,N,A) be a
congestion game form, with n ≥ 2. Then, F is strongly consistent if and only if A is
i-good; moreover, if A is i-good, a SE can be efficiently computed.

Proof: Let F = (M,N,A) be a congestion game form, and suppose A is i-good.
As we know from Lemma 2, A has a simple tree representation. In the general case, a
simple M-tree has the form depicted in Fig. 3: a single chain descending from r to a
single split node v, from which descend several chains to nodes in D. Each such chain
(including the one from r to v) might be empty. What it means in terms of strategies in
A, is that: ∃C ⊆ M s.t. ∀S1 6= S2 ∈ A : S1∩S2 = C; i.e. except one common subset
of facilities that all players have to choose, their allowed strategies are either equal
or disjoint. We claim that this case is strategically isomorphic to the case of singleton
strategies. First, since all users must choose all the facilities in C, these facilities don’t
influence the game and can be removed. Then, A becomes pair wise disjoint collection
of subsets of facilities; therefore, each such subset S ∈ A can be replaced by a single
new facility mS , with vmS

(k) =
∑

m∈S

vm(k) for every k. Now, we have an equivalent

game with only singleton strategies allowed; as we know from Thm. 2, such game has
a strong equilibrium which can be efficiently computed.

Now suppose F = (M,N,A) is a congestion game form where n ≥ 2 and A
contains an i-bad configuration (x, y;X, Y, Z). We must show that F is not strongly
consistent; i.e. there exists a monotone increasing congestion game G derived from F
which doesn’t possess a SE. To construct such game, we must specify the exact strategy
spaces A1, ..., An so that A =

⋃
i∈N

Ai, and specify monotone increasing vm(k) for each

m ∈ M . We can express A as a union of four disjoint sets A = AX ∪AY ∪AZ ∪A∅,
where:

AX = {S ∈ A|S ∩ {x, y} = {x}},
AY = {S ∈ A|S ∩ {x, y} = {y}},
AZ = {S ∈ A|S ∩ {x, y} = {x, y}},
A∅ = {S ∈ A|S ∩ {x, y} = ∅}

¿From the i-bad configuration definition, we know that AX , AZ and AY ∪ A∅ are not
empty (since X ∈ AX , Z ∈ AZ and Y ∈ AY ∪A∅). We consider two distinct cases:

1. A∅ = ∅. In this case, G is specified as follows:

A1 = AX ∪AZ , A2 = AY ∪AZ , A3 = ... = An = AZ

vm (k) =

−3, m ∈ {x, y} , k < n
−1, m ∈ {x, y} , k = n
0, m /∈ {x, y}



Since both facilities x,y have negative utility no matter how many players choose them,
it is a strictly dominant strategy for players 1,2 to choose a subset that contains only
one facility among x,y. Therefore, in any NE of the game (pure or mixed) player 1 will
choose a strategy in AX and player 2 will choose a strategy in AY , so both will gain -3.
However, if both players deviate to a strategy in AZ , both will gain -2. Therefore, any
NE of the game is not strong, i.e. SE does not exist.

2. A∅ 6= ∅. In this case, G is specified as follows:

A1 = AX ∪AZ , A2 = AY ∪AZ ∪A∅, A3 = ... = An = A∅

vm (k) =


2, m = x, k < 2
4, m = x, k ≥ 2
-5, m = y, k < 2
-1, m = y, k ≥ 2
0, m 6= x, y

Since the facility y always yields a negative utility, it is strictly dominant for player 1 to
choose a strategy in AX . Therefore, in any NE player 2 will choose a strategy in A∅; so,
in any NE (pure or mixed) they will gain 2 and 0 respectively. But then, if both players
deviate to a strategy in AZ , they will gain 3; So in this case too a SE does not exist,
which completes our proof. ut

The above results suggest that in the monotone increasing setting there are (in a
sense) strictly less games which possess SE than in the monotone decreasing setting
(unless we consider the symmetric case). In the setting where congestion has a negative
effect, the whole class of ”tree games” is guaranteed to have a SE; in the increasing
setting, where congestion has a positive effect on the players, SE is guaranteed to exist
only in a strict subset of the corresponding structures. As shown in the proof of Thm. 4,
this set of structures is strategically isomorphic to the singletons setting. This result is
(perhaps) a bit surprising, since it contradicts the intuition – the players ”help” each
other instead of ”harming” each other, but despite of that the setting is less stable, in
the sense that there are less strong equilibria. Nevertheless, as we will later see, the
decreasing case is not more stable than the increasing case when we consider CSE.

5 Structural characterization of existence of CSE

When we attempt to replace the notion of SE with the much stronger notion of CSE,
many of the previous results no longer hold. It is easy to see that in the monotone
decreasing setting even the following simple example with two players in a symmetric
singleton strategies game doesn’t possess a CSE. Consider two facilities {m1,m2}with
v1(m1) = −2, v2(m1) = −4, v1(m2) = −5, v2(m2) = −10. Both facilities are
available to both players. Here, playing m1 is a strictly dominant strategy for both
players; however, (m1,m1) is not a CSE, since a deviation to the correlated profile
{ 1

2 (m1,m2), 1
2 (m2,m1)} strictly increases the payoff of both players (each player will

suffer a cost of 3.5 instead of a cost of 4). Therefore, a CSE doesn’t exist in this example
(which is a variant of the Prisoner’s Dilemma). In fact, we can generalize this example
to the following statement:



Proposition 1. Consider the monotone decreasing setting, and let F = (M,N,A) be
a congestion game form with n ≥ 2 and |A| ≥ 2. Then, F is not correlated strongly
consistent.

Proof (sketch): The proof is in the same spirit as the proof of Theorem 4. It is therefore
omitted due to lack of space.

In the increasing setting, however, we see that our results still hold; moreover, we
can prove the following strong claim:

Theorem 5. Consider the monotone increasing setting, and let F = (M,N,A) be a
congestion game form. Suppose A is i-good. Then F is correlated-strong equivalent.

Proof: From our previous observations we know that if A is i-good, we can as-
sume w.l.o.g. that A has only singleton strategies. So we must show that any SE of
a monotone increasing congestion game where all strategies are singletons is also a
CSE. Suppose, for contradiction, that a∗ ∈ A is a SE of a monotone increasing con-
gestion game with singleton strategies, and it is not a CSE. Therefore, there exists a
non-empty coalition S ⊆ N and a correlated mixed strategy aS ∈ ∆(

∏
i∈S

Ai) such

that ∀i ∈ S Ui(aS , a∗−S) > Ui(a∗). Let i be a player in S with maximal utility
in a∗: ∀j ∈ S ui(a∗) ≥ uj(a∗). Since Ui(aS , a∗−S) > Ui(a∗), there must be a
realization bS ∈

∏
j∈S

Aj of aS such that ui(bS , a∗−S) > ui(a∗). Since the game con-

tains only singleton strategies, ui(bS , a∗−S) = vm(σm(bS , a∗−S)) for a resource m such
that bi = {m}. Let T = {j ∈ S|bj = bi}. T is non-empty, since i ∈ T . From the
definition of T and since T ⊆ S it holds that σm(bS , a∗−S) ≤ σm(bT , a∗−T ); there-
fore, since the game is monotone-increasing, ui(bT , a∗−T ) ≥ ui(bS , a∗−S) > ui(a∗).
Since ∀j ∈ T, uj(bT , a∗−T ) = ui(bT , a∗−T ), we have that ∀j ∈ T, uj(bT , a∗−T ) =
ui(bT , a∗−T ) ≥ ui(bS , a∗−S) > ui(a∗) ≥ uj(a∗), which contradicts our assumption
that a∗ is a SE. ut

This brings us to the following result:

Theorem 6. Consider the monotone increasing setting, and let F = (M,N,A) be a
congestion game form, with n ≥ 2. Then, F is correlated strongly consistent if and only
if A is i-good; moreover, if A is i-good, a CSE can be efficiently computed.

Proof: ⇐ Follows from Thms. 4 and 5.
⇒ The proof is similar to the proof of this direction in Thm. 4, observing that the

counter examples given there are solved via elimination of strictly dominated strategies,
and therefore don’t posses a CSE. ut

Notice that while the set of congestion game forms that are strongly consistent in the
increasing case is a strict subset of the set of congestion game forms that are strongly
consistent in the decreasing case, we get inclusion in the other direction when consid-
ering correlated-strong consistency.

6 Further work

One interesting question is whether further common restrictions, e.g. linearity, on the
utility functions may have significant effects on the existence of SE and CSE. A related



aspect has to do with restrictions on the utility functions to be only positive or only
negative. Our initial study suggests that using such assumptions (in addition to mono-
tonicity) one can slightly expand the set of situations where SE and/or CSE exist, but
only in a very esoteric manner. Other aspects of SE and CSE, such as uniqueness and
Pareto-optimality are also under consideration.
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